clear; clc; funcprot(0); //given data //data from EXAMPLE 9.3 H_eps = 150;//in m z = 2;//in m U2 = 35;//runner tip speed in m/s c3 = 10.5;//meridonal velocity of water in m/s c4 = 3.5;//velocity at exit in m/s delHN = 6.0;//in m delHR = 10.0;//in m delHDT = 1.0;//in m g = 9.81;//in m/s^2 Q = 20;//in m^3/s omega_sp = 0.8;//specific speed of turbine in rad c2 = 38.73;//in m/s //data from this example Pa = 1.013;//atmospheric pressure in bar Tw = 25;//temperature of water in degC Pv = 0.03166;//vapor pressure of water at Tw rho = 1000;//density of wate in kg/m^3 g = 9.81;//acceleration due to gravity in m/s^2 H3 = ((c4^2 - c3^2)/(2*g)) + delHDT - z; H2 = H_eps-delHN-(c2^2)/(2*g); delW = g*(H_eps-delHN-delHR-z)-0.5*c3^2 -g*H3; ctheta2 = delW/U2; alpha2 = (180/%pi)*atan(ctheta2/c3); beta2 = (180/%pi)*atan((ctheta2-U2)/c3); eff_H = delW/(g*H_eps); omega = (omega_sp*(g*H_eps)^(5/4))/sqrt(Q*delW); Hs = (Pa-Pv)*(10^5)/(rho*g) - z; sigma = Hs/H_eps; omega_ss = omega*(Q^0.5)/(g*Hs)^(3/4); //Results printf('The NSPH for the turbine = %.3f m.',Hs); if omega_ss>4.0 then printf('\n Since the suction specific speed (= %.4f.)is greater than 4.0(rad), the cavitation is likely to occur.',omega_ss); end //there is small error in the answer given in textbook