clear; clc; funcprot(0); //given data H_eps = 150;//in m z = 2;//in m U2 = 35;//runner tip speed in m/s c3 = 10.5;//meridonal velocity of water in m/s c4 = 3.5;//velocity at exit in m/s delHN = 6.0;//in m delHR = 10.0;//in m delHDT = 1.0;//in m g = 9.81;//in m/s^2 Q = 20;//in m^3/s omega_sp = 0.8;//specific speed of turbine in rad c2 = 38.73;//in m/s //Calculations H3 = ((c4^2 - c3^2)/(2*g)) + delHDT - z; H2 = H_eps-delHN-(c2^2)/(2*g); delW = g*(H_eps-delHN-delHR-z)-0.5*c3^2 -g*H3; ctheta2 = delW/U2; alpha2 = (180/%pi)*atan(ctheta2/c3); beta2 = (180/%pi)*atan((ctheta2-U2)/c3); eff_H = delW/(g*H_eps); omega = (omega_sp*(g*H_eps)^(5/4))/sqrt(Q*delW); N = omega*30/%pi; D2 = 2*U2/omega; //Results printf('(i)The pressure head H3 relative to the trailrace = %.1f m\n The pressure head H2 at exit from the runner = %.2f m',H3,H2); printf('\n(ii)The flow angles at runner inlet and at guide vane exit:\n alpha2 = %.1f deg\n beta2 = %.2f deg',alpha2,beta2); printf('\n(iii)The hydraulic efficiency of the turbine = %.4f',eff_H); printf('\n The speed of rotation, N = %d rev/min',N); printf('\n The runner diameter is, D2 = %.3f m',D2); //there are small errors in the answers given in textbook