clc // initialization of variables clear //part(a) E=200 //GPa d=184 //mm c=99.1 //mm Ix=36.9e+06//mm^4 k=14.0 //N/mm^2 P=170 //kN //calculations E=E*10^3 P=P*10^3 Beta=(k/(4*E*Ix))^(1/4) y_max=P*Beta/(2*k) M_max=P/(4*Beta) S_max=M_max*c/Ix printf('part (a)') printf('\n y_max = %.3f mm',y_max) printf('\n M_max = %.2f kN.m',M_max/10^6) printf('\n S_max = %.1f MPa',S_max) // part (b) z1=1.7//m z1=z1*10^3 //mm z2=2*z1 // A_bz=exp(-Beta*z)*(sin(Beta*z)+cos(Beta*z)) // C_bz=exp(-Beta*z)*(-sin(Beta*z)+cos(Beta*z)) A_bzo=1 C_bzo=1 A_bz1=exp(-Beta*z1)*(sin(Beta*z1)+cos(Beta*z1)) A_bz2=exp(-Beta*z2)*(sin(Beta*z2)+cos(Beta*z2)) C_bz1=exp(-Beta*z1)*(-sin(Beta*z1)+cos(Beta*z1)) C_bz2=exp(-Beta*z2)*(-sin(Beta*z2)+cos(Beta*z2)) y_end=P*Beta/(2*k)*(A_bzo+A_bz1+A_bz2) M_end=P/(4*Beta)*(C_bzo+C_bz1+C_bz2) y_center=P*Beta/(2*k)*(A_bzo+2*A_bz1) M_center=P/(4*Beta)*(C_bzo+2*C_bz1) y_max=max(y_end,y_center) M_max=max(M_end,M_center) S_max=M_max*c/Ix printf('\n part(b)') printf('\n y_max = %.3f mm',y_max) printf('\n M_max = %.2f kN.m',M_max/10^6) printf('\n S_max = %.1f MPa',S_max)