global Z0; Z0=50; //define the S-parameters of the transistor s11=0.3*exp(%i*(+30)/180*%pi); s12=0.2*exp(%i*(-60)/180*%pi); s21=2.5*exp(%i*(-80)/180*%pi); s22=0.2*exp(%i*(-15)/180*%pi); //noise parameters of the transistor Fmin_dB=1.5 Fmin=10^(Fmin_dB/10); Rn=4; Gopt=0.5*exp(%i*45/180*%pi); //compute a noise circle Fk_dB=1.6;//desired noise performance Fk=10^(Fk_dB/10); Qk=abs(1+Gopt)^2*(Fk-Fmin)/(4*Rn/Z0); //noise circle parameter dfk=Gopt/(1+Qk); //circle center location rfk=sqrt((1-abs(Gopt)^2)*Qk+Qk^2)/(1+Qk); //circle radius //plot a noise circle a=[0:360]/180*%pi; set(gca(),"auto_clear","off"); plot(real(dfk)+rfk*cos(a),imag(dfk)+rfk*sin(a),'b','linewidth',2); //specify the goal gain G_goal_dB=8; G_goal=10^(G_goal_dB/10); //find constant operating power gain circles go=G_goal/abs(s21)^2; //normalized gain dgo=go*conj(s22-delta*conj(s11))/(1+go*(abs(s22)^2)); //center rgo=sqrt(1-2*K*go*abs(s12*s21)+go^2*abs(s12*s21)^2); rgo=rgo/abs(1+go*(abs(s22)^2)); //radius //map a constant gain circle into the Gs plane rgs=rgo*abs(s12*s21/(abs(1-s22*dgo)^2-rgo^2*abs(s22)^2)); dgs=((1-s22*dgo)*conj(s11-delta*dgo)-rgo^2*s22)/(abs(1-s22*dgo)^2-rgo^2*abs(s22)^2); //plot constant gain circle in the Smith Chart set(gca(),"auto_clear","off"); plot(real(dgs)+rgs*cos(a),imag(dgs)+rgs*sin(a),'r','linewidth',2); //choose a source reflection coefficient Gs Gs=dgs+%i*rgs; //find the corresponding GL GL=(s11-conj(Gs))/(delta-s22*conj(Gs)); //find the actual noise figure F=Fmin+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+Gopt)^2; //% print out the actual noise figure Actual_F_dB=10*log10(F) //find the input and output reflection coefficients Gin=s11+s12*s21*GL/(1-s22*GL); Gout=s22+s12*s21*Gs/(1-s11*Gs); //find the VSWRin and VSWRout Gimn=abs((Gin-conj(Gs))/(1-Gin*Gs)); Gomn=abs((Gout-conj(GL))/(1-Gout*GL)); VSWRin=(1+Gimn)/(1-Gimn); //VSWRin should be unity since we used the constant operating gain approach VSWRout=(1+Gomn)/(1-Gomn); //specify the desired VSWRin VSWRin=1.5; //find parameters for constant VSWR circle Gimn=(1-VSWRin)/(1+VSWRin) dvimn=(1-Gimn^2)*conj(Gin)/(1-abs(Gimn*Gin)^2); //circle center rvimn=(1-abs(Gin)^2)*abs(Gimn)/(1-abs(Gimn*Gin)^2); //circle radius //plot VSWRin=1.5 circle in the Smith Chart plot(real(dvimn)+rvimn*cos(a),imag(dvimn)+rvimn*sin(a),'g','linewidth',2); //plot a graph of the output VSWR as a function of the Gs position on the constant VSWRin circle Gs=dvimn+rvimn*exp(%i*a); Gout=s22+s12*s21*Gs./(1-s11*Gs); //find the reflection coefficients at the input and output matching networks Gimn=abs((Gin-conj(Gs))./(1-Gin*Gs)); Gomn=abs((Gout-conj(GL))./(1-Gout*GL)); //and find the corresponding VSWRs VSWRin=(1+Gimn)./(1-Gimn); VSWRout=(1+Gomn)./(1-Gomn); figure; //open new figure for the VSWR plot plot(a/%pi*180,VSWRout,'r',a/%pi*180,VSWRin,'b','linewidth',2); legend('VSWR_{out}','VSWR_{in}'); title('Input and output VSWR as a function of \Gamma_S position'); xlabel('Angle \alpha, deg.'); ylabel('Input and output VSWRs'); mtlb_axis([0 360 1.3 2.3]) //choose a new source reflection coefficient Gs=dvimn+rvimn*exp(%i*85/180*%pi); //find the corresponding output reflection coefficient Gout=s22+s12*s21*Gs./(1-s11*Gs); //compute the transducer gain in this case GT=(1-abs(GL)^2)*abs(s21)^2.*(1-abs(Gs).^2)./abs(1-GL*Gout).^2./abs(1-Gs*s11).^2; GT_dB=10*log10(GT) //find the input and output matching network reflection coefficients Gimn=abs((Gin-conj(Gs))./(1-Gin*Gs)); Gomn=abs((Gout-conj(GL))./(1-Gout*GL)); //and find the corresponding VSWRs VSWRin=(1+Gimn)./(1-Gimn) VSWRout=(1+Gomn)./(1-Gomn) //also compute the obtained noise figure F=Fmin+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+Gopt)^2; F_dB=10*log10(F)