global Z0; Z0=50; //define the S-parameters of the transistor s11=0.3*exp(%i*(+30)/180*%pi); s12=0.2*exp(%i*(-60)/180*%pi); s21=2.5*exp(%i*(-80)/180*%pi); s22=0.2*exp(%i*(-15)/180*%pi); //pick the noise parameters of the transistor Fmin_dB=1.5 Fmin=10^(Fmin_dB/10); Rn=4; Gopt=0.5*exp(%i*45/180*%pi); //compute a noise circle Fk_dB=1.6; Fk=10^(Fk_dB/10); Qk=abs(1+Gopt)^2*(Fk-Fmin)/(4*Rn/Z0) //noise circle parameter dfk=Gopt/(1+Qk); //circle center location rfk=sqrt((1-abs(Gopt)^2)*Qk+Qk^2)/(1+Qk) //circle radius //plot a noise circle a=[0:360]/180*%pi; mtlb_hold on plot(real(dfk)+rfk*cos(a),imag(dfk)+rfk*sin(a),'b','linewidth',2); // plot optimal reflection coefficient plot(real(Gopt),imag(Gopt),'bo'); //specify the desired gain G_goal_dB=8; G_goal=10^(G_goal_dB/10); K = 1.18; //find the constant operating power gain circles go=G_goal/abs(s21)^2; // normalized the gain dgo=go*conj(s22-conj(s11))/(1+go*(abs(s22)^2)); //center rgo=sqrt(1-2*K*go*abs(s12*s21)+go^2*abs(s12*s21)^2); rgo=rgo/abs(1+go*(abs(s22)^2)); //map a constant gain circle into the Gs plane rgs=rgo*abs(s12*s21/(abs(1-s22*dgo)^2-rgo^2*abs(s22)^2)); dgs=((1-s22*dgo)*conj(s11-dgo)-rgo^2*s22)/(abs(1-s22*dgo)^2-rgo^2*abs(s22)^2); //plot a constant gain circle in the Smith Chart mtlb_hold on plot(real(dgs)+rgs*cos(a),imag(dgs)+rgs*sin(a),'r','linewidth',2); //choose a source reflection coefficient Gs Gs=dgs+%i*rgs; plot(real(Gs), imag(Gs), 'ro'); //text(real(Gs)-0.05,imag(Gs)+0.08,'\bf\Gamma_S'); //find the actual noise figure F=Fmin+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+Gopt)^2; //print out the actual noise figure Actual_F_dB=10*log10(F)