//define the S-parameters of the transistor s11=0.3*exp(%i*(+30)/180*%pi); s12=0.2*exp(%i*(-60)/180*%pi); s21=2.5*exp(%i*(-80)/180*%pi); s22=0.2*exp(%i*(-15)/180*%pi); K=1.18 //find the maximum gain Gmax=abs(s21/s12)*(K-sqrt(K^2-1)); Gmax_dB=10*log10(Gmax) //specify the target gain G_goal_dB=8; //would like to build an amplifier with 8dB gain G_goal=10^(G_goal_dB/10); //convert from dB to normal units //find constant operating power gain circles go=G_goal/abs(s21)^2; //find the center of the constant operating power gain circle dgo=go*conj(s22-conj(s11))/(1+go*(abs(s22)^2)); //find the radius of the circle rgo1=sqrt(1-2*K*go*abs(s12*s21)+go^2*abs(s12*s21)^2); rgo=rgo1/abs(1+go*(abs(s22)^2)); //plot a circle in the Smith Chart a=(0:360)/180*%pi; set(gca(),"auto_clear","off"); plot(real(dgo)+rgo*cos(a),imag(dgo)+rgo*sin(a),'r','linewidth',2); //choose the load reflection coefficient zL=1-%i*0.53 GL=(zL-1)/(zL+1); plot(real(GL),imag(GL),'bo'); [Ro,Theta]=polar(atan(imag(Gs),real(Gs))); Gin=s11+s12*s21*GL/(1-s22*GL); Gs=conj(Gin); Gs_abs=abs(Gs) Gs_angle=(Theta/%pi)*180; zs=(1+Gs)/(1-Gs);