//first we define all parameters for the transistor and the circuit Z0=50; //characteristic imedance of the system Vcc=3.6; //power supply voltage Vce=2; //collector voltage Ic=10e-3; //collector current T=300; //ambient temperature (300K) //transistor parameters (they are very similar to BFG403W) beta=145; // current gain Is=5.5e-18; // saturation current VAN= 30; // forward Early voltage tau_f=4e-12; // forward transition time rb=125; // base resistance rc=15; // collector resistance re=1.5; // emitter resistance Lb=1.1e-9; // base inductance Lc=1.1e-9; // collector inductance Le=0.5e-9; // emitter inductance Cjc=16e-15; // collector junction capacitance at zero applied voltage mc=0.2; // collector junction grading coefficient Cje=37e-15; // emitter junction capacitance at zero applied voltage me=0.35; // emitter junction grading coefficient phi_be=0.9; // base-emitter diffusion potential phi_bc=0.6; // base-collector diffusion potential Vbe=phi_be; // base-emitter voltage // some physical constants k=1.38e-23; // Boltzmann's constant q=1.6e-19; // elementary charge VT=k*T/q; // thermal potential disp('DC biasing parameters'); Ib=Ic/beta; disp("Amperes",Ib,"Base current"); Rc=(Vcc-Vce)/Ic; disp("Ohms",Rc,"Collector resistance"); Rb=(Vcc-Vbe)/Ib; disp("Ohms",Rb,"Base resistance"); r_pi=VT/Ib; disp("Ohms",r_pi,"Rpi"); r0=VAN/Ic; disp("Ohms",r0,"R0"); gm=beta/r_pi; disp("Mho",gm,"Gm"); Vbc=Vbe-Vce; Cmu=Cjc*(1-Vbc/phi_bc)^(-mc); disp("Farads",Cmu,"base collector capacitance"); if(Vbe<0.5*phi_be) Cpi_junct=Cje*(1-Vbe/phi_be)^(-me); else C_middle=Cje*0.5^(-me); k_middle=1-0.5*me; Cpi_junct=C_middle*(k_middle+me*Vbe/phi_be); end; disp("Farads",Cpi_junct,"Junction Capacitance"); Cpi_diff=Is*tau_f/VT*exp(Vbe/VT); disp("Farads",Cpi_diff,"Differential capacitance"); Cpi=Cpi_junct+Cpi_diff; disp("Farads",Cpi,"Total Capacitance"); C_miller=Cmu*(1+gm*r_pi/(r_pi+rb)*Z0*r0/(r0+rc+Z0)); disp("Farads",C_miller,"Miller Capacitance"); C_input=Cpi+C_miller; disp("Farads",C_input,"Total input capacitance");