//Two-tailed Test Concerning Difference between Two Means //(When the variances of the Populations are UnKnown and the Sample Sizes are Large) //Example8.20 //page265 //Test : Ho:u1=u2 or u1-u2=0 // H1: u1#u2 or u1-u2#0 clc; Sigma1 = input('Enter the variance of population1') Sigma2 = input('Enter the varinace of population2') n1 = input('Enter the sample size taken from population1') n2 = input('Enter the sample size taken from population2') X1 = input('Enter the mean of the sample1') X2 = input('Enter the mean of the sample2') alpha = input('Enter the significance level') alpha = alpha/2; //Calculation of Z statistic Z_X1_X2 = Norm_Dis_Diff_Two_Mean(X1,X2,Sigma1,Sigma2,n1,n2) disp(Z_X1_X2,'calculated Normal Z-statistic =') Z_alpha = standard_normal_zstat(alpha) disp(Z_alpha,'Standard Normal Stastistic=') if ((-Z_alpha < Z_X1_X2) &(Z_X1_X2< Z_alpha)) then disp('It falls in the Acceptance Region') disp('Then Null Hypothesis Ho should be Accepted') else disp('It falls in the Rejection Region') disp('Then Null Hypothesis Ho should be Rejected') end //Result //Enter the variance of population1 9 //Enter the varinace of population2 36 //Enter the sample size taken from population1 50 //Enter the sample size taken from population2 80 //Enter the mean of the sample1 21 //Enter the mean of the sample2 23 //Enter the significance level 0.01 // // calculated Normal Z-statistic = // // - 2.5197632 // // Standard Normal Stastistic= // // 2.57 // // It falls in the Acceptance Region // // Then Null Hypothesis Ho should be Accepted