clc p=14 //MPa t=0.3 //cm E=200 //GPa v=0.3 gamma1=77 //kN/m^3 alpha=12*10^-6 // per degree celcius A=2 T=50 //degree celcius D=[3.33 0.99 0;0.99 3.3 0;0 0 1.16] disp(D) //[D*]=(t*[D])/4*A [D1]=(10^6*[D])/4*A disp(D1) //solution a: stiffness matrix xi=0 x1=0 xj=4 x2=4 xm=0 x3=0 yi=-1 y1=-1 yj=-1 y2=-1 ym=1 y3=1 ai=0-4 a1=0-4 disp(ai,a1) aj=0-0 a2=0-0 disp(aj,a2) am=4-0 a3=4-0 disp(am,a3) bi=-1-1 b1=-1-1 disp(bi,b1) bj=1+1 b2=1+1 disp(bj,b2) bm=-1+1 b3=-1+1 disp(bm,b3) k11=(10^6/8)*(3.3*4+1.16*16) printf('k11=%f\n',k11) k12=(10^6/8)*(3.3*2*-2+0) printf('k12=%f\n',k12) k13=(10^6/8)*(0+1.16*4*-4) printf('k13=%f\n',k13) k22=(10^6/8)*(3.3*4+0) printf('k22=%f\n',k22) k23=0 printf('k23=%f\n',k23) k32=0 printf('k32=%f\n',k32) k21=(10^6/8)*(3.3*2*-2+0) printf('k21=%f\n',k21) k31=(10^6/8)*(0+1.16*4*-4) printf('k31=%f\n',k31) k33=(10^6/8)*(0+1.16*16) printf('k33=%f\n',k33) kuu=[k11 k12 k13;k21 k22 k23;k31 k32 k33] disp(kuu) kuv=10^6*[2.15 -1.16 -0.99;-0.99 0 0.99;-1.16 1.16 0] disp(kuv) kvv=10^6*[7.18 -0.58 -6.6;-0.58 0.58 0;-6.6 0 6.6] disp(kvv) kvu=[2.15 -0.99 -1.16;-1.16 0 1.16;-0.99 0.99 0] disp(kvu) ke=[kuu kuv;kvu kvv] disp(ke) //solution b: Fx=0 Fy=0.077 //N/cm^2 Qbe={0,0,0,-0.0308,-0.0308,-0.0308}//N disp(Qbe) stp=(sqrt(20)*0.3)*{-2*(1400/sqrt(20)),-4*(1400/sqrt(20))} disp(stp) Qp3={0,-420,-420,0,-840,-840} disp(Qp3) epsilon=alpha*T printf('epsilon=%f\n\n',epsilon) //Qte=[B']*[D]*epsilon*At Qte=(1/8)*[-2 0 -4;2 0 0;0 0 4;0 -4 -2;0 0 2;0 4 0]*((200*10^5)/0.91)*[1 0.3 0;0.3 1 0;0 0 0.35]*[0.0006;0.0006;0]*(1.2) printf('Qte=%f in N\n',Qte) Qe={-5142.85;4742.85;-400;-10285.71;-840.03;9445.67} disp(Qe,"in N is=")