//Page Number: 163 //Example 3.12 clc; //Given S11=0.6; S12=0.045; S21=2.5; S22=0.50; TS=0.5; TL=0.4; Z0=50; //ohm Vrms=10; //V //(i) Gain Parameters //(i)Reflection coefficients of input and output Tin=S11+((S12*S21*TL)/(1-(S22*TL))); Tout=S22+((S12*S21*TS)/(1-(S22*TS))); //Transducer Gain x=(1-(TS)^2)/((1-(S11*TS))^2); y=(S21*S21); z=(1-(TL)^2)/((1-(Tout*TL))^2); GT=x*y*z; disp(GT,'Transducer Gain:'); //Available Power Gain z1=1-(Tout)^2; GA=(x*y)/z1; disp(GA,'Available power Gain:'); //Power Gain z2=1-(Tin)^2; GP=(x*y)/z2; disp(GP,'Power Gain:'); //(ii) Power levels //Power available at source Pavs=(sqrt(2)*Vrms)^2/(8*Z0); disp('W',Pavs,'Power available at source:'); Pl=9.4*Pavs; //Power available at input Pin=Pl/13.5; disp('W',Pin,'Power available at input:'); //(iii) VSWRs M1=Pin/Pavs; M2=Pl/(9.6*Pavs); Tin1=sqrt(1-M1); Tout1=sqrt(1-M2); vswrin=(1+Tin1)/(1-Tin1); disp(vswrin,'Input VSWR:'); vswrout=(1+Tout1)/(1-Tout1); disp(vswrout,'Output VSWR:'); //Calculations for gain are done wrong in book, hence answers dont match