// Example 11.11 clear all; clc; // Given data Qy_bar = 1.04*10^(-2); // Emission rate for one year in curie/year // Let (chi/Q_bar) = d which is called 'Dilution factor' d = 4*10^(-8); // Dilution factor in year/cm^3 vd = 0.01; // Experimentally determined constant // 1. T_12 = 8.04; // Half life of Iodine 131 in days T_12f = 14; // First order half life of Iodine 131 in days // Converting days into years by using 1 year = 365 days lambda = 0.693/(T_12/365); // Decay constant of Iodine-131 lambdaf = 0.693/(T_12f/365); // First order decay constant of Iodine-131 // Calculation Cf = (Qy_bar*d*vd)/(lambda+lambdaf); // Expressing the result in micro-curie Cf = Cf*10^6; // Result printf(" \n The activity of I-131 on the vegetation = %.2E micro-curie/m^2 \n",Cf); // 2. // The proportionality factor has a value 9*10^(-5) Ci/cm^3 of milk per Ci/m^2 of grass // Calculation Cm = 9*10^(-5)*Cf; // Result printf(" \n The concentration of I-131 in the milk = %.2E micro-curie/m^2 \n",Cm); // 3. MPC = 3*10^(-7); // Maximum Permissible Concentration in micro-curie/cm^3 // Calculation H_dot = (2270*Cm)/MPC; // Result printf(" \n The annual dose rate to an infant thyroid by consuming radiated milk = %.2E mrem/year \n",H_dot);