// Example 10.3 clear; clc; // Given data E = 2; // Energy of gamma rays in MeV X_dot = 2.5; // Exposure rate in mR/hour phi0 = 10^9; // Intensity of gamma rays in gamma-rays/cm^2-sec from isotropic point source // Using the data from Table II.5 for 1 MeV mua_rho_air = 0.0238; // The ratio of total attenuation coefficient to density of air in cm^2/g phi_b = X_dot/(0.0659*E*mua_rho_air); // Buildup flux in gamma-rays/cm^2-sec // From standard data tables for concrete rho = 2.35; // Density of concrete in g/cm^3 // Using the data from Table 10.3 for concrete at 2 MeV A1 = 18.089; A2 = 1-A1; alpha1 = -0.0425; alpha2 = 0.00849; // Using Eq 10.26 printf(" \n The equation to calculate thickness is \n %.2E = (%E/2) *(%4.3f*E1(%4.3f*mu*a) %4.3f*E1(%4.3f*mu*a)) \n",phi_b,phi0,A1,(1+alpha1),A2,(1+alpha2)); // Using the data from Table II.4 for E = 1 MeV for concrete mu_rho = 0.0445; // The ratio of total attenuation coefficient to density in cm^2/g mu = mu_rho*rho; // On solving the right hand side of equation // RHS = 1.13*10^7*(E1(0.9575*mu*a)-0.94*E1(1.00849*mu*a)) // Let mu*a = x x = 1:20 for i = 1:20 RHS(i) = 1.13*10^7*(exp(-0.9575*x(i))*((1/(0.9575*x(i))+(1/(0.9575*x(i))^3))) - exp(-1.00849*x(i))*((1/(1.00849*x(i))+(1/(1.00849*x(i))^3)))); end plot2d("nl",x(:),RHS(:)); xlabel("mu*a"); ylabel("RHS"); title("Semilog plot of RHS vs mu*a") // From the graph mua = 13.6; // This is the value when RHS = 1 // Calculation a = mua/mu; // Result printf("\n The concrete thickness = %d cm \n",a);