clc // Given that L_ = 20 // Length of the mild steel product in mm h = 50 // Height of the mild steel product in mm L = 50 // Horizontal length of the mild steel product in mm t = 5 // Thickness in mm l=25 // Length of the bend in mm E = 207 // Modulus of elasticity in kN/mm^2 n = 517 // Strain hardening rate in N/mm^2 Y = 345 // Yield stress in N/mm^2 mu = 0.1// Cofficient of friction e = 0.2 // Fracture strain theta = 20 // Bend angle in degree // Sample Problem 9 on page no. 135 printf("\n # PROBLEM 3.9 # \n") Rp = ((1 /((exp(e) - 1)))-0.82)*t/1.82 Y_1 = Y+n*e Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1)))) M = ((0.55*t)^2)*((Y/6)+(Y_1/3)) + ((0.45*t)^2)*((Y/6)+(Y_2/3)) Fmax = (M/l)*(1+(cosd((atand(mu))+mu*sind(atand(mu))))) Fmax_ = L_*Fmax alpha = 90 /((12*(Rp+0.45*t)*M/(E*(10^3)*(t^3)))+1) Ls = 2*(((Rp+0.45*t)*%pi/4) + 50-(Rp+t)) printf("\n Maximum bending force = %d N, \n The required puch angle = %f°,\n The stock length = %f mm",Fmax_,alpha,Ls) // Answer in the book for maximum bending force is given as 4144 N