clc // Given that A = 150*6 // Cross-section of strips in mm^2 w = 150 // Width of the strip in mm ti = 6 // Thickness in mm pA = 0.20 // Reduction in area d = 400 // Diameter of steel rolls in mm Ys = 0.35// Shear Yield stress of the material before rolling in KN/mm^2 Ys_ = 0.4// Shear Yield stress of the material after rolling in KN/mm^2 mu = 0.1 // Cofficient of friction mu_ = 0.005 // Cofficient of friction in bearing D = 150 // The diameter of bearing in mm v = 30 // Speed of rolling in m/min // Sample Problem 3 on page no. 115 printf("\n # PROBLEM 3.3 # \n") tf =0.8*ti Ys_a = (Ys + Ys_)/2 r=d/2 thetaI = sqrt((ti-tf)/r) lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf)) lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI) thetaN =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r)))) Dtheta_a = thetaN/4 Dtheta_b = (thetaI- thetaN)/8 i = 0 for i = 0:4 theta = i*Dtheta_a y = (1/2)* (tf+r*theta^2) lambda = 2*sqrt(r/tf)*atand(theta*(%pi/180) *sqrt(r/tf)) p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lambda)) end I1 = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830) for i = 0:8 theta1 = i*Dtheta_b + thetaN y = (1/2)* (tf+r*theta1^2) lambda = 2*sqrt(r/tf)*atand(theta1*(%pi/180) *sqrt(r/tf)) p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lambda))) end I2 = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759) + 2*(.855+.804+.772)) F = r*(I1 + I2) F_ = F*w T = (r^2)*mu*(I2-I1) T_ =T*w W = v*(1000/60)/r P_ = 2*T_*W Pl = mu_*F_*D*W P = Pl+P_ printf("\n The mill power = %f kW",P/1000) // Answer in the book is given as 79.18 kW