clc // Given that A= 60*7.5 // Cross sectional area in cm^2 v=0.05 // Withdrawal rate in m/sec t = 0.0125 // Thickness in m thetaF= 1500 // Temperature of mould face in degree centigrate thetaP = 1550 // thetaO = 20 // Initial temperature of mould in Degree centigrate L= 268e3 // Latent heat of molten metal in J/Kg Dm = 7680 // Density of molten metal in Kg/m^3 Cs = 0.67e+3 //Specific heat of molten metal in J/Kg-K Cm = 0.755e3 //Specific heat of mould in J/Kg-K Ks = 76 // Conductivity of molten metal in W/m-K hF = 1420 // Heat transfer coefficient at the casting-mould interface in W/m^2-°C Dtheta = 10 // Maximum temperature of cooling water in ° C // Sample Problem 8 on page no. 77 printf("\n # PROBLEM 2.8 # \n") L_ = L+Cm*(thetaP-thetaF) x=L_ / (Cs*(thetaF-thetaO)) y= hF*t/Ks printf(" L_/(Cs(thetaF-thetaO))=%f,\n hF*t/Ks=%f",x,y) z=0.11 // Where z=hF^2 * lm / (v*Ks*Dm*Cs) lm= (z*v*Ks*Dm*Cs)/(hF^2) Z=0.28 // Where Z=Q/(lm*(thetaF-thetaO)*sqrt(lm*v*Dm*Cs*Ks)) Q = Z*lm*(thetaF-thetaO)*sqrt(lm*v*Dm*Cs*Ks) m = Q / (4.2e3*Dtheta) printf("\n The mould length = %f meter,\n The cooling water requirement = %f Kg/sec", lm,m) // Answer for The cooling water requirement in the book is given as 5.05 Kg/sec, Which is wrong.