// Initilization of variabes Wa=1000 //N // weight of block A Wb=500 //N // weight of block B theta=15 // degree // angle of the wedge mu=0.2 // coefficient of friction between the surfaces in contact phi=7.5 // degrees // used in case 2 pie=3.14 // Caculations // CASE (a) // consider the equilibrium of upper block A // rearranging eq'ns 1 &2 and solving them using matrix for N1 & N2 A=[1 -0.4522;-0.2 0.914] B=[0;1000] C=inv(A)*B // Now consider the equilibrium of lower block B // From eq'n 4 N3=Wb+(C(2)*cosd(theta))-(mu*C(2)*sind(theta)) //N // Now from eq'n 3 P=(mu*N3)+(mu*C(2)*cosd(theta))+(C(2)*sind(theta)) // N // CASE (b) // The eq'n for required coefficient for the wedge to be self locking is, mu_req=(theta*pie)/(360) // multiplying with (pie/180) to convert it into radians // Results clc printf('The minimum horizontal force (P) which should be applied to raise the block is %f N \n',P) printf('The required coefficient for the wedge to be self locking is %f \n',mu_req)