//pathname=get_absolute_file_path('9.11.sce') //filename=pathname+filesep()+'9.11-data.sci' //exec(filename) //Pressure at which air is supplied(in bar): p1=1 p8=p1 //Temperature at which air is supplied(in K): T1=27+273 //Maximum temperature in the cycle(in K): T5=1000 //Pressure at state 6(in bar): p6=3 p7=p6 p4=10 p5=p4 p3=3 //Temperature at state 7(in K): T7=995 //Calorific value of fuel(in kJ/kg): c=42000 //Value of Cp(in kJ/kg): Cp=1.0032 //Air flow in compressor(in kg/s): m=30 //Isentropic efficiency of compression: nc=0.85 //Isebtropic efficiency of expansion: ne=0.90 //Adiabatic index of compression: r=1.4 //Pressure ratio for perfect intercooling: rp=sqrt(10) //Temperature at state 2'(in K): T21=T1*rp^((r-1)/r) //Temperature at state 2(in K): T2=(T21-T1)/nc+T1 //For perfect intercooling: T3=T1 //Temperature at state 4'(in K): T41=T3*(p4/p3)^((r-1)/r) //Temperature at state 4(in K): T4=(T41-T3)/nc+T3 //Total compressor work(in kJ/kg): Wc=2*Cp*(T2-T1) //Temperature at state 6'(in K): T61=T5*(p6/p5)^((r-1)/r) //Temperature at state 6(in K): T6=T5-(T5-T61)*ne //Temperature at state 8'(in K): T81=T7*(p8/p7)^((r-1)/r) //Temperature at state 8(in K): T8=T7-(T7-T81)*ne //Expansion work output per kg air(in kJ/kg): Wt=Cp*(T5-T6+T7-T8) //Heat added per kg air(in kJ/kg): qa=Cp*(T5-T4+T7-T6) //Fuel required per kg of air: mf=qa/c //Air-fuel ratio: afr=1/mf //Net output(in kW): Wnet=(Wt-Wc)*m //Thermal efficiency: nth=(Wt-Wc)/qa printf("\nRESULT") printf("\nThermal efficiency = %f percent",nth*100) printf("\nNet output = %f kW",Wnet) printf("\nA/F ratio = %f",afr)