//pathname=get_absolute_file_path('9.09.sce') //filename=pathname+filesep()+'9.09-data.sci' //exec(filename) //Temperature at which air is supplied(in K): T1=27+273 //Initial pressure(in bar): p2=8 p3=p2 //Temperature of air leaving the combustion chamber(in K): T3=1100 //Pressure at state 4(in bar): p4=1 p1=p4 //Effectiveness of heat exchanger: E=0.8 //Polytropic efficiency of the compressor: npc=0.85 //Polytropic efficinency of the turbnie: npt=0.90 //Adiabatic index of compression: r=1.4 //Value of Cp(in kJ/kg.K): Cp=1.0032 //Compression index: nc=r*npc/(r*npc-(r-1)) //Expansion index: nt=r/(r-npt*(r-1)) //Temperature at state 2: T2=T1*(p2/p1)^((nc-1)/nc) //Temperature at state 4(in K): T4=T3*(p4/p3)^((nt-1)/nt) //Using heat exchanger effectiveness, temperature at state 5(in K): T5=(T4-T2)*E+T2 //Heat added in combustion chambers(in kJ/kg): qa=Cp*(T3-T5) //Compressor work(in kJ/kg): Wc=Cp*(T2-T1) //Turbine work(in kJ/kg): Wt=Cp*(T3-T4) //Cycle efficiency: ncycle=(Wt-Wc)/qa //Work ratio: Wr=(Wt-Wc)/Wt //Specific work output(in kJ/kg): swo=Wt-Wc printf("\nRESULT") printf("\nCycle efficiency = %f percent",ncycle*100) printf("\nWork ratio = %f",Wr) printf("\nSpecific work output = %f kJ/kg",swo)