//pathname=get_absolute_file_path('9.01.sce') //filename=pathname+filesep()+'9.01-data.sci' //exec(filename) //Compression ratio: r=6 //Swept volume(in m^3): v=0.15 //Pressure at the beginning of compression(in kPa): p1=98 //Temperature at the beginning of compression(in K): T1=60+273.15 //Heat supplied(in kJ/kg): Q23=150 //Value of Cp(in kJ/kg): Cp=1 //Value of Cv(in kJ/kg): Cv=0.71 //Adiabatic compression factor: n=Cp/Cv //Gas constant(in kJ/kg.K): R=Cp-Cv //Volume at point 2(in m^3): v2=v/(r-1) //Total cylinder volume(in m^3): v1=r*v2 //Mass(in kg): m=p1*v1/(R*T1) //Pressure at point 2(in kPa): p2=p1*(v1/v2)^n //Temperature at state 2(in K): T2=p2*v2*T1/(p1*v1) //Temperature at state 3(in K): T3=Q23/(m*Cv)+T2 v3=v2 //Pressure at point 3(in kPa): p3=p2*v2*T3/(v3*T2) v4=v1 //Pressure at point 4(in kPa): p4=p3*(v3/v4)^n //Temperature at point 4(in K): T4=p4*v4*T3/(p3*v3) //Entropy change(in kJ/K): dS=m*Cv*log(T4/T1) //Heat rejected(in kJ): Q41=m*Cv*(T4-T1) //Net work done(in kJ): W=Q23-Q41 //Efficiency: e=W/Q23 //Mean effective pressure(in kPa): mep=W/v printf("\nRESULT") printf("\nm.e.p = %f kPa",mep)