//pathname=get_absolute_file_path('8.22.sce') //filename=pathname+filesep()+'8.22-data.sci' //exec(filename) //Total power required(in kW): P=4500 //Heat load(in kW): Q=15000 //Efficiency of turbines: n=0.80 //Steam consumption rate(in kg/s): m=10 //From steam tables: h1=3137 //kJ/kg s1=6.9563 //kJ/kg.K T2=179.18 //C h2=2813.41 //kJ/kg hf=640.23 //kJ/kg //For case 1: T2a=213.34 //C s2a=7.125 //kJ/kg.K s3=s2a x3=0.853 h3=2221.11 //kJ/kg //For case 2: h2a=2878.13 //kJ/kg h3aa=h2a T3aa=210.04 //C s3aa=7.138 //kJ/kg.K s4=s3aa x4=0.855 h4=2225.92 //kJ/kg //Enthalpy at state 2'(in kJ/kg): h2a=h1-(h1-h2)*n //Heat available for process heating(in kJ/kg): q=h2a-hf //Mass flow rate(in kg/s): msh=Q/q //Enthalpy at state 3'(in kJ/kg): h3a=h2-(h2a-h3)*n //Mass of steam produced: mshp=(P+msh*(h2a-h3a))/((h1-h2a)+(h2a-h3a)) //For case 2: mshpn=10 mshn=6.7 //Power produced by HP turbine(in kW): Pn=mshpn*(h1-h2a) M3aa=mshpn-mshn //Enthalpy at state 4'(in kJ/kg): h4a=h3aa-(h3aa-h4)*n //Power produced by LP turbine(in kW): Pn1=M3aa*(h3aa-h4a) //Total power produced(in kW): Pt=Pn+Pn1 printf("\n RESULT \n") printf("\nTotal power produced = %f kW",Pt)