//pathname=get_absolute_file_path('8.09.sce') //filename=pathname+filesep()+'8.09-data.sci' //exec(filename) //Pressure of steam entering(in bar): p1=30 //Temperature(in C): T1=300 //Pressure of steam leaving the first stage(in bar): p3=6 //Steam leaving second stage at pressure(in bar): p4=1 //Pressure of steam leaving the third stage(in bar): p5=0.075 //Condenstate temperature(in C): T=38 //Temperature of water after leaving first and second heater(in C): T8=150 T13=95 //Efficiency of turbine: n=0.8 //Turbine output(in MW): W=15 //From steam tables: h2=3230.9 //kJ/kg s2=6.9212 //kJ/kg.K s3=s2 T3=190.97 //K(by interpolation) h3=2829.63 //kJ/kg s3a=7.1075 //kJ/kg.K s4=s3a sf1=1.3026 //kJ/kg.K sfg1=6.0568 //kJ/kg.K hf1=417.46 //kJ/kg hfg1=2258 //kJ/kg h5=234.64 //kJ/kg hf6=670.56 //kJ/kg h11=hf6 //Actual enthalpy at state 3(in kJ/kg): h3a=h2-n*(h2-h3) //Dryness fraaction at state 4: x4=(s4-sf1)/sfg1 //Enthalpy at state 4(in kJ/kg): h4=hf1+x4*hfg1 //Actual enthaly at state 4(in kJ/kg): h4a=h3a-n*(h3a-h4) //Actual dryness fraction at state 4: x4a=(h4a-hf1)/hfg1 //Actual entropy at state 4(in kJ/kg.K): s4a=sf1+x4a*sfg1 //Entropy at state 5(in kJ/kg.K): s5=s4a //Dryness fraction: x5=0.8735 //Enthalpy at state 5(in kJ/kg): h5=2270.43 //Actual enthalpy at state 5(in kJ/kg): h5a=h4a-n*(h4a-h5) //By calculation: m1=0.1293 //kg m2=0.1059 //kg //Turbine output(in kJ/kg): Wt=(h2-h3a)+(1-m1)*(h3a-h4a)+(1-m1-m2)*(h4a-h5a) //Rate of steam generation required(in kg/hr): r=W*10^3/Wt*3600 //Capacity of drain pump(in kg/hr): c=(m1+m2)*r printf("\n RESULT \n") printf("\nCapacity of drain pump = %f kg/hr",c)