//pathname=get_absolute_file_path('19.07.sce') //filename=pathname+filesep()+'19.07-data.sci' //exec(filename) //Specific heat(in kJ/kg.K): Cpa=1.005 Cpg=1.087 ra=1.4 rg=1.33 //Gas constant(in kJ/kg.K): R=0.287 //Speed of aeroplane(in m/s): C0=250 //Velocity at exit of turbine(in m/s): C4a=180 CV=43000 //kJ/kg //Thrust power(in kW): P=800 //Temperatures(in K): T0=-20+273 T2=474.25 T3=973 //Pressures(in bar): p0=0.3 p1=0.31 p5=p0 //Compressor efficiency: nc=0.85 //Jet engine efficiency: nj=0.90 //Pressure ratio: r1=6 //Temperature at state 2(in K): T1=T0+C0^2/(2*Cpa*10^3) T2a=T1+(T2-T1)/nc //Pressure at state 2(in bar): p2=p1*r1 p3=p2 //Fuel air ratio: FA=(Cpa*T3-Cpg*T2a)/(CV-Cpa*T3) printf("\n RESULT \n") printf("\nAir-fuel ratio = %f:1",1/FA) //Temperature at state 4'(in K): T4a=T3-Cpa/Cpg*(T2a-T1)/(1+FA) //Temperature at state 4(in K): T4=T3-(T3-T4a)/nc //Pressure at state 4(in bar): p4=p3*(T4/T3)^(rg/(rg-1)) //Temperature at state 5(in K): T5=T4a*(p5/p4)^((rg-1)/rg) //Nozzle exit velocity(in m/s): C5=sqrt(2*nj*(Cpg*10^3*(T4a-T5)+C4a^2/2)) //Overall efficiency: no=(((1+FA)*C5-C0)*C0)/(FA*CV*10^3)*100 //Rate of air consumption(in kg/s): ma=P*10^3/(((1+FA)*C5-C0)*C0) printf("\nRate of air consumption = %f kg/s",ma) //Power produced by the turbine(in kW): Pt=ma*(1+FA)*Cpg*(T3-T4a) printf("\nPower produced by turbine = %f kW",Pt) //Temperature at state 5'(in K): T5a=T4a-((C5^2-C4a^2)/(2*Cpg*10^3)) //Density of exhaust gases(in m^3/kg): d5a=p5*10^2/(R*T5a) //Jet exit area(in m^2): Aj=ma*(1+FA)/(C5*d5a) printf("\nJet exit area = %f m^2",Aj)