//pathname=get_absolute_file_path('19.03.sce') //filename=pathname+filesep()+'19.03-data.sci' //exec(filename) //Specific heat of gases(in kJ/kg.K): Cpg=1.14 //kJ/kg.K Cpa=1.005 //kJ/kg.K //Mechanical efficiency: nm=0.96 //Polytropic efficiency of compressor: nc=0.87 //Turbine efficiency: nt=0.90 //Nozzle efficiency: nn=0.95 //By pass ratio: B=5.5 //Mass flow rate of air(in kg/s): ma=200 //Pressures(in bar): p2=1.5 p1=1 p3=28 pa=p1 //Temperatures(in K): T1=288 rg=1.33 ra=1.4 CV=43100 //kJ/kg T4=1573 //K //For compression:a1=((ne-1)/ne) a1=1/nc*(ra-1)/ra a1=0.328 //For expansion:a2=(nt-1)/nt a2=nt*(rg-1)/rg a2=0.223 //Temperature at state 2'(in K): T2a=T1*(p2/p1)^a1 //Temperature at state 3'(in K): T3a=T2a*(p3/p2)^a2 //Using nozzle efficiency: dT=nn*T2a*(1-(pa/p2)^((ra-1)/ra)) //Velocity at exit of nozzle(in m/s): C8=sqrt(2*Cpa*10^3*dT) //Mass flow rate of bypass air(in kg/s): mab=ma*B/(B+1) //Mass flow rate of hot gases(in kg/s): mca=ma-mab //Thrust available due to by pass air(in kN): Tb=mab*C8/10^3 //Air fuel ratio: r1=(Cpg*T4-Cpa*T3a)/(CV-Cpg*T4) //Temperature at state 5'(in K): T5a=T4-(Cpa*(T3a-T2a)/(nm*(1+r1)*Cpg)) //Temperature at state 6'(in K): T6a=(Cpg*nm*T5a-(1+B)*Cpa*(T2a-T1))/(Cpg*nm) //Pressure at state 4(in bar): p4=p3-p2 //Pressure at state 5(in bar): p5=p4*(T5a/T4)^(1/a2) //Pressure at state 6(in bar): p6=p5*(T6a/T5a)^(1/a2) //Critical pressure ratio: c=((rg+1)/2)^(rg/(rg-1)) //Pressure at state 7(in bar): p7=p6/c //For exit nozzle(in K): dT1=nn*T6a*(1-(p7/p6)^((rg-1)/rg)) //Velocity at exit of nozzle(in m/s): C7=sqrt(2*Cpg*10^3*dT1) //Thrust due to hot gases(in kN): Tg=mca*C7/10^3 //Total thrust(in kN): Tt=Tg+Tb //Specific thrust(in kN/kg/s): st=Tt/ma printf("\n RESULT \n") printf("\nSpecific thrust = %f kN/kg/s",st) //Specific fuel consumption(in kg/h.N): sfc=r1*mca*3600/(Tt*10^3) printf("\nSpecific fuel consumption = %f kg/h.N",sfc)