//pathname=get_absolute_file_path('19.01.sce') //filename=pathname+filesep()+'19.01-data.sci' //exec(filename) //Specific heat of gases(in kJ/kg.K): Cpg=1.13 //kJ/kg.K Cpa=1.005 //kJ/kg.K rg=1.33 ra=1.4 C=41.84*10^3 //kJ/kg of fuel //Temperatures(in K): T1=272 T3=1000 //Compression efficiency: nc=0.84 p3=3 p2=3 p1=0.5 p5=0.4 //Turbine efficiency: nt=0.82 //Nozzle efficiency: nn=0.92 //Speed(in m/s): Ca=200 //Temperature at state 2(in K): T2=T1*(p2/p1)^((ra-1)/ra) //Temperature at state 2'(in K): T2a=T1+(T2-T1)/nc //Compressive work(in kW): Wc=Cpa*(T2a-T1) printf("\n RESULT \n") printf("\nPower required for compressor = %f kW/kg",Wc) //Air fuel ratio: r=(C-Cpg*T3)/(Cpg*T3-Cpa*T2a) printf("\nAir fuel ratio = %f",r) //Temperature at state 4'(in K): T4a=T3-Cpa/Cpg*(T2a-T1)/(1+r) T4a=810.46 T4=T3-(T3-T4a)/nt //Pressure of gas leaving turbine(in bar): p4=p3*(T4/T3)^(rg/(rg-1)) printf("\nPressure of gas leaving turbine = %f bar",p4) //Temperature at state 5(in K): T5=T4a*(p5/p4)^((rg-1)/rg) //Temperature at state 5'(in K): T5a=T4a-nn*(T4a-T5) //Exit jet velocity(in m/s): C5a=sqrt(2*Cpg*(T4a-T5a)*10^3) Ce=C5a //Thrust per kg of air per second: T=(1+1/r)*Ce-Ca printf("\nThrust = %f N/kg/s",T)