//pathname=get_absolute_file_path('13.13.sce') //filename=pathname+filesep()+'13.13-data.sci' //exec(filename) //Initial pressure(in bar): p1=20 //Final pressure(in bar): p3=5 n=1.3 //From steam tables: T1=212.42+273 //K Tsat=186.43+273 //K (at 11.6 bar) psat=5.452 //bar (at 155.14 C) h1=2799.5 //kJ/kg v1=0.009963 //m^3/kg s1=6.3409 //kJ/kg.K s2aa=s1 h2aa=2693.98 //kJ/kg s2a=6.5484 //kJ/kg.K s3a=s2a h3a=2632.76 //kJ/kg s3=s1 h3=2544.21 //kJ/kg //Pressure at throat(in bar): p2=p1*0.58 //Temperature at state 2(in K): T2=T1*(p2/p1)^((n-1)/n) //Degree of supersaturation: d=p2/psat //Degree of undercooling: d1=Tsat-T2 printf("\nRESULT\n") printf("\nDegree of supersaturation = %f",d) printf("\nDegree of undercooling = %f",d1) //Isentropic enthalpy drop: h12=(n/(n-1))*p1*10^2*v1*(1-(T2/T1)) //Enthalpy at state 2(in kJ/kg): h2=h1-h12 //Heat drop with no saturation(in kJ/kg): h12aa=h1-h2aa //Loss of available heat drop(in kJ/kg): L=h12aa-h12 //Increase in entropy(in kJ/kg.K): s12a=L/Tsat //Loss due to undercooling(in kJ/kg): L1=h3a-h3 //Percentage loss: p=L1/(h1-h3)*100 printf("\n\nEntropy change = %f kJ/kg.K",s12a) printf("\nLoss due to undercooling = %f kJ/kg",L1) printf("\nPercentage loss = %f percent",p)