//pathname=get_absolute_file_path('13.04.sce') //filename=pathname+filesep()+'13.04-data.sci' //exec(filename) //Pressure of steam entering(in bar): p1=16 //Pressure at exit(in bar): p3=5 //Mass flow rate(in kg/s): m1=1 m2=m1 m3=m1 //From steam tables: //For case 1: h1=3034.8 //kJ/kg s1=6.8844 //kJ/kg.K v1=0.15862 //m^3/kg n=1.3 h2=2891.39 //kJ/kg h3=2777 //kJ/kg v2=0.2559 //m^3/kg v3=0.3882 //m^3/kg //For case 2: h2a=2905.73 //kJ/kg v2a=0.2598 //m^3/kg v3a=0.40023 //m^3/kg //Pressure at the throat of nozzle(in bar): p2=p1*(2/(n+1))^(n/(n-1)) //Heat drop up to throat section(in kJ/kg): q12=h1-h2 //Velocity at throat(in m/s): C2=sqrt(2*(h1-h2)*10^3) //Heat drop from exit(in kJ/kg): q23=h2-h3 //Velocity at exit(in m/s): C3=sqrt(2*(h2-h3)*10^3+C2^2) //Throat area(in m^2): A2=m2*v2/C2 //Exit area(in m^2): A3=m3*v3/C3 printf("\nRESULT\n") printf("\nFor frictionless expansion") printf("\nThroat area = %f cm^2",A2*(10^4)) printf("\nExit area = %f cm^2",A3*(10^4)) //Considering expansion to have 10% friction loss: q12a=0.9*q12 //Actual velocity at throat(in m/s): C2a=sqrt(2*q12a*10^3) //Actual throat area(in m^2): A2a=m2*v2a/C2a //Actual drop at the exit of the nozzle(in kJ/kg): q23a=0.9*q23 //Actual enthalpy at state 3(in kJ/kg): h3a=h2a-q23a //Actual velocity at exit(in m/s): C3a=sqrt(2*q23a*10^3+C2a^2) //Actual area at exit(in m^2): A3a=m3*v3a/C3a printf("\n\nConsidering friction") printf("\nThroat area = %f cm^2",A2a*(10^4)) printf("\nExit area = %f cm^2",A3a*(10^4))