//Ex5_12 //Comparision of Inverse Filtering and Wiener Filtering // Version : Scilab 5.4.1 // Operating System : Window-xp, Window-7 //Toolbox: Image Processing Design 8.3.1-1 //Toolbox: SIVP 0.5.3.1-2 //Reference book name : Digital Image Processing //book author: Rafael C. Gonzalez and Richard E. Woods clc; close; clear; xdel(winsid())//to close all currently open figure(s). function[H,H1]=lowpassfilter(type1,M,N,D0,n,k)//lowpassfilter is used to filter an image . u=0:(M-1); v=0:(N-1); idx=find(u>M/2); u(idx)=u(idx)-M; idy=find(v>N/2); v(idy)=v(idy)-N; [U,V]=meshgrid(v,u); D=sqrt(U.^2+V.^2); //Distance Calculation D=fftshift(D); for i=1:M for j=1:N H(i,j)=exp(-k.*((i-(M/2))^2+(j-(N/2))^2).^(5/6)); //Atmospheric Degradation Function end end select type1 case'inverse'then if argn(2)==4 then n=1;k=0.0025; end H=H; H1=H; case'butterworth'then if argn(2)==4 then n=1; end // H1 = (ones(M,N)./(1+(D./D0).^(2*n))); H1=double(D<=D0); H=H.*H1; else disp('Unknownfiltertype.') end endfunction /////////////////////////////////// Main Programm //////////////////////////////// gray=imread('Ex5_12.png'); gray=im2double(rgb2gray(gray)); figure,ShowImage(gray,'Gray Image'); title('Original Image','color','blue','fontsize',4); [M,N]=size(gray); h=fft2(gray);//fft2() is used to find 2-Dimensional Fast Fourier Transform of an matrix in=fftshift(h);//fftshift() is used to rearrange the fft output, moving the zero frequency to the center of the spectrum. i=log(1+abs(in)); inm=mat2gray(i) ////////////////////////// Filtering With Cut-off Frequency 480 /////////////////////// [filt,H1]=lowpassfilter('inverse',M,N,480,1,0.0025); // Function which generate Filter Mask Corresponding to Low Frequency //filt_shift=fftshift(filt); //figure,ShowImage(abs(filt),'Filter Mask'); //title('Filter Mask to Specific Cut-Off Frequency'); n=in./(filt+%eps);//Multiply the Original Spectrum with the Filter Mask. Image_filter=abs(ifft(fftshift(n))); Image_filter=mat2gray(Image_filter) figure,ShowImage(Image_filter,'Filtered Image'); title('Filtered Image with Full Inverse Filter','color','blue','fontsize',4); ////////////////////////// Filtering With Cut-off Frequency 40 /////////////////////// [filt,H1]=lowpassfilter('butterworth',M,N,40,10,0.0025); // Function which generate Filter Mask Corresponding to Low Frequency //filt_shift=fftshift(filt); //figure,ShowImage(abs(filt),'Filter Mask'); //title('Filter Mask to Specific Cut-Off Frequency'); n=(in.*H1)./(filt+%eps);//Multiply the Original Spectrum with the Filter Mask. Image_filter=abs(ifft(fftshift(n))); Image_filter=mat2gray(Image_filter) figure,ShowImage(Image_filter,'Filtered Image'); title('Filtered Image with Cut-Off Frequency 40','color','blue','fontsize',4); ////////////////////////// Filtering With Cut-off Frequency 40 /////////////////////// [filt,H1]=lowpassfilter('butterworth',M,N,40,10,0.0025); // Function which generate Filter Mask Corresponding to Low Frequency //filt_shift=fftshift(filt); //figure,ShowImage(abs(filt),'Filter Mask'); //title('Filter Mask to Specific Cut-Off Frequency'); n=(in.*H1)./(((1/filt+%eps).*(filt^2/(filt^2+6)))+%eps); // Wiener Filtering. Image_filter=abs(ifft(fftshift(n))); Image_filter=mat2gray(Image_filter) figure,ShowImage(Image_filter,'Filtered Image'); title('Filtered Image with Cut-Off Frequency 40','color','blue','fontsize',4);