//Ex10_8 // Illustration of the Canny Edge Detection Methods // Version : Scilab 5.4.1 // Operating System : Window-xp, Window-7 //Toolbox: Image Processing Design 8.3.1-1 //Toolbox: SIVP 0.5.3.1-2 //Reference book name : Digital Image Processing //book author: Rafael C. Gonzalez and Richard E. Woods clc; close; clear; xdel(winsid())//to close all currently open figure(s). a=imread("Ex10_8.tif"); //a=im2double(a); figure,ShowImage(a,'Gray Image'); title('Original Image','color','blue','fontsize',4); [M,N]=size(a); ////////////////// Threshlded Gradient of Smoothed Image //////////////////////////////// a1=imfilter(a,fspecial('average',5)); Mask=[-1 -2 -1;0 0 0;1 2 1]; // Mask for the Sobel GradientX_Image=imfilter(a1,Mask); // Filtering the Original Image with the Mask //figure,ShowImage(GradientX_Image,'Filter Image'); //title('Sobel X-direction Gradient Image','color','blue','fontsize',4); Mask=[-1 0 1;-2 0 2;-1 0 1]; // Mask for the Sobel GradientY_Image=imfilter(a1,Mask); // Filtering the Original Image with the Mask //figure,ShowImage(GradientY_Image,'Filter Image'); //title('Sobel Y-direction Gradient Image','color','blue','fontsize',4); Gradient=GradientX_Image+GradientY_Image; //figure,ShowImage(Gradient,'Filter Image'); //title('Sobel X+Y Gradient Image','color','blue','fontsize',4); th=84; // 33% of the Maximum Value in Gradient Image [row col]=find(Gradient>84); Gradient_Thresh=zeros(M,N); for i=1:length(row) Gradient_Thresh(row(i),col(i))=255; end figure,ShowImage(Gradient_Thresh,'Filter Image'); title('Thresholded gradient Image','color','blue','fontsize',4); //////////////////// Marr-Hildreth Edge Detection /////////////////////////////////// a=im2double(a); sigma=4; for i=1:25 for j=1:25 Mask(i,j)=[(i^2+j^2-(2*sigma^2))/sigma^4]*exp(-(i^2+j^2)/(2*sigma^2)); // Mask Generation end end Filter_Image=imfilter(a,Mask); // Filtering the Original Image with the Mask //figure,ShowImage(Filter_Image,'Filter Image'); //title('Laplacian of gaussian Image','color','blue','fontsize',4); b=zeros(M,N); temp=Filter_Image; for i=2:M-1 // Zero Crossing Detection for j=2:N-1 //temp=[Filter_Image(i-1:i+1,j-1:j+1)]; if((temp(i-1,j-1)>0 & temp(i+1,j+1)<0) | (temp(i-1,j-1)<0 & temp(i+1,j+1)>0)) then b(i,j)=255; else if ((temp(i-1,j+1)>0 & temp(i+1,j-1)<0) | (temp(i-1,j+1)<0 & temp(i+1,j-1)>0)) then b(i,j)=255; else if ((temp(i,j+1)>0 & temp(i,j-1)<0) | (temp(i,j+1)<0 & temp(i,j-1)>0)) then b(i,j)=255; else if ((temp(i-1,j)>0 & temp(i+1,j)<0) | (temp(i,j+1)<0 & temp(i,j-1)>0)) then b(i,j)=255; end end end end end end figure,ShowImage(b,'Zero Crossing Image'); title('Marr-Hildreth Edge Detected Image','color','blue','fontsize',4); ////////////////////////// Canny Edge Detecedd Image ////////////////////////////////////// a=imread("Ex10_8.tif"); E=edge(a,'canny',[0.15 0.60]); figure,ShowImage(E,'Canny Image'); title('Canny Edge Detected Image','color','blue','fontsize',4);