//Ex10_18 // Using Edge Information Based on the Laplacian to Improve Global Thresholding // Version : Scilab 5.4.1 // Operating System : Window-xp, Window-7 //Toolbox: Image Processing Design 8.3.1-1 //Toolbox: SIVP 0.5.3.1-2 //Reference book name : Digital Image Processing //book author: Rafael C. Gonzalez and Richard E. Woods clc; close; clear; xdel(winsid())//to close all currently open figure(s). a=imread("Ex10_18.tif"); a1=im2double(a); figure,ShowImage(a,'Gray Image'); title('Original Image','color','blue','fontsize',4); [M,N]=size(a); [count cell]=imhist(a); figure,plot2d3(cell,count); title('Histogram','color','blue','fontsize',4); //////////////////////////////// Otsu Method ///////////////////////////// normal_hist=count/(M*N); Sum=0; cumu_mean=0; for k=1:max(cell)+1 Sum=Sum+normal_hist(k); P1(k)=Sum; cumu_mean=cumu_mean+(k*normal_hist(k)); m(k)=cumu_mean; Mg=cumu_mean; sigma_B(k)=(((Mg*P1(k))-m(k))^2)/(%eps+(P1(k)*(1-P1(k)))); end th_Otsu=42; //find(sigma_B==max(sigma_B)); b2=im2bw(a1,(th_Otsu/255)); figure,ShowImage(b2,'Binary Image'); title('Segmented Result Using Otsu Thresholding Algorithm','color','blue','fontsize',4); mask=fspecial('laplacian'); c=abs(imfilter(a,mask)); figure,ShowImage(mat2gray(c),'Binary Image'); title('Laplacian Image','color','blue','fontsize',4); //d=c.*a1; //[count cell]=imhist(d); //figure,plot2d3(cell,count); //title('Histogram','color','blue','fontsize',4); th_Otsu=115; //find(sigma_B==max(sigma_B)); b3=im2bw(a1,(th_Otsu/255)); figure,ShowImage(b3,'Binary Image'); title('Segmented Result Using Otsu Thresholding Algorithm','color','blue','fontsize',4);