clear all; clc; rm=8/12 N=7500 U=rm*N*%pi/30 printf("The peripheral velocity is calculated as U= %0.1f ft/s\n\n",U) disp("From equation 9.1 we have U/V1=sinα1/4") //let x= U/V1 alpha1=70*%pi/180 x=(sin(alpha1))/4 printf("\n Thus U/V1= %0.4f",x) V1=U/x printf("\n Thus V1= %0.1f ft/s",V1) disp("From velocity diagram at station1 we have V1sinα1-W1sinß1=U and V1cosα1=W1cosß1 or W1sinß1") //let y= W1sinß1 V1=2228.8 U=523.6 y=V1*sin(alpha1)-U printf("\n Hence W1sinß1= %0.1f ft/s",y) //Let z=W1cosß1 z=V1*cos(alpha1) printf("\n Thus W1cosß1= %0.1f ft/s",z) disp("Hence tanß1=2.06") tanbeta1=2.06 beta1=(atan(tanbeta1))*180/%pi printf("\n Thus beta1= %0.1f degrees and W1=1746 ft/s",beta1) disp("At station 2 we have W2sinß2-V2sinα2=U and V2cosα2=W2cosß2,with W2=W1=1746ft/s and ß1=ß2=64.1 degrees") //Let l=V2sinα2 l=1746*sin(64.1*%pi/180)-523.6 printf(" Thus V2sinα2=%0.0f ft/s",l) //m=V2cosα2 m=1746*cos(64.1*%pi/180) printf("\n V2cosα2 %0.2f ft/s",m) disp("Hence tanα2=1.373") tanalpha2=1.373 alpha2=((atan(tanalpha2)*180/%pi)) printf(" Hence α2= %0.2f degrees",alpha2) disp("Hence V2=1295.2 ft/s") disp("At station 3 we have V3sinα3-W3sinα3=U=523.6ft/s") disp("Also W3cosß3=V3cosα3") //let n=V3cosα3 V3=1295.2 alpha3=53.9*%pi/180 n=V3*cos(alpha3) printf(" Thus W3cosß3= %0.1f ft/s",n) disp("Hence tanß3=0.685") tanbeta3=0.685 beta3=((atan(tanbeta3))*180/%pi) printf(" Hence ß3= %0.1f degrees",beta3) disp("Thus W3=925.1 ft/s") disp("Also W4=W3=925.1ft/s") disp("ß4=ß3=34.4 degrees") disp("And V4=VaV1cosß4") beta4=34.4*%pi/180 //let y=Va*V1 y=925.0848 V4=y*cos(beta4) printf(" Thus V4= %0.1f ft/s",V4) disp("α4=0 degrees") disp("From these velocities,the energy transfers of the rotors can be calculated") U=523.6 V1=2228.8 alpha1=70*%pi/180 V2=1295.2 alpha2=53.9*%pi/180 delta_E1=U*(V1*sin(alpha1)+V2*sin(alpha2)) printf(" Thus delta_E1= %0.1f ((ft/s)^2)",delta_E1) delta_E1=1.643*(10^6)/(32.2*778)//converting units from (ft/s)^2 to Btu/lb printf("\n On converting to Btu/lb we have delta_E1=%0.1f Btu/lb",delta_E1) V3=1295.2 alpha3=alpha2 delta_E2=U*(V3*sin(alpha3)) printf("\n delta_E2=%0.1f ((ft/s)^2)",delta_E2) delta_E2=0.546*(10^6)/(32.2*778) printf("\n On converting to Btu/lb we have delta_E2=%0.1f Btu/lb",delta_E2) delta_Ec=65.6+21.8 printf("\n Hence the total energy transfer is delta_Ec= %0.1f Btu/lb",delta_Ec) disp("To compare with that calculated with equation9.3,we have delta_Ec=8*U^2") delta_Ec=8*(U^2) printf(" delta_Ec= %0.2f ((ft/s)^2)",delta_Ec) delta_Ec=2.19*10^6/(32.2*778)//converting units printf("\n On converting we have delta_Ec= %0.2f Btu/lb",delta_Ec)//answer given in the book is 87.5,however 87.42 is more accurate disp("The difference is due to round off error.") disp("The static enthalpies and pressure at stations 1,2,3 and 4 are same for the ideal case and can be calculated from h1=h01-((V1)^2)/2 ") disp("Where h01=h0i=1405Btu/lb from the Mollier diagram for p0i=3000 psia,T01=950 degrees Farenheit") //let l=(V1^2)/2 V1=2228.8 l=(V1^2)/(2*32.2*778) printf(" Thus (V1^2)/2 = %0.0f Btu/lb",l) disp("Hence we have h1=1306 Btu/lb and p1=1400psia")