clear all; clc; disp("Referring to figure 8.3,we have T_s2=T_01*((p2/p01)^((k-1)/k))") T_01=2860 p2=180 p01=250 k=1.4//k=(Cp/Cv) T_s2=T_01*((p2/p01)^((k-1)/k)) printf(" T_s2= %0.0f R",T_s2) disp(" From ε_s=(h2-hs2)/((V_2^2)/2),we have Cp*(T2-Ts2=ε_s*(V_2^2)/2.Combining with Cp*(T_02-T_2)=((V_2^2)/2),where T02=T01, we have Cp*(T_02-Ts2)=(1+εs)*((V_2^2)/2)") disp("V2=[2*Cp*(T_02-T_s2)/(1+εs)]^0.5") T_02=T_01 Cp=0.24*778*32.2 epsilon_s=0.07 T_s2=2604 V2=[2*Cp*(T_02-T_s2)/(1+epsilon_s)]^0.5 printf(" V2= %0.0f ft/s",V2) V2=1696 alpha2=65*%pi/180//converting to radians V_u2=V2*sin(alpha2) printf("\n Hence we have V_u2=V2*sin(α2) = %0.0f ft/s",V_u2) Va=V2*cos(alpha2) printf("\n Va=V2*cos(alpha2)= %0.1f ft/s",Va) disp("T2=T_02-(V_2^2)/(2*Cp)") T_02=2860 V2=1696 Cp=0.24*778*32.2 T2=T_02-(V2^2)/(2*Cp) printf(" Hence we have T2= %0.0f R ",T2) disp("Since V1=Va,we have T1=T_01-((V1^2)/(2*Cp))") V1=716.8 T_01=2860//2860R T1=T_01-((V1^2)/(2*Cp)) printf("T1= %0.0f R",T1) disp("From delta_E=Cp*delta_T0s=U*(V_u2+V_u3)=U*V_u2, we have U=Ps/(m*V_u2)") Ps=375*550*32.2//converting unit of Ps m=3 V_u2=1537 U=Ps/(m*V_u2) printf("U=%0.0f ft/s",U) disp("φ=Va/U") Va=716.8 U=1440 phi=Va/U printf("φ=%0.3f",phi) tanbeta3=U/Va printf("\n tanß3= %0.2f",tanbeta3) beta3=((atan(tanbeta3))*180/%pi) printf("\n ß3= %0.1f degrees",beta3) alpha3=0 phi=0.498 alpha2=65*%pi/180 R=1+((phi/2)*(tan(alpha3)-tan(alpha2))) printf("\n R= %0.3f",R) disp("Also from the velocity diagram in figure 8.4,we have tanß2=tanα2-(1/φ)=0.136,so ß2=7.8 degrees") disp("Similarly we have W3=Va/cosß3=1606 ft/s and W2=Va/cosß2=723.5 ft/s") disp("Across the rotor we have h2+(W2^2)/2=h3+(W3^2)/2. Hence T3=T2+(W2^2)-(W3^2)/(2*Cp)=2450R") disp("We have Ts3=T3-εr*(W3^2)/(2*Cp)=2424R") disp("Also p3=p2*(Ts3/T2)^(k/(k-1))=136.9 psia") ETAs=(1+(0.12*(1606^2)+0.07*(1696^2)*(2450/2621))/(2*0.24*778*32.2*(2817-2450)))^-1 printf(" From equation 8.2 we have ETAs= %0.4f",ETAs) //Let j=0.498/2 j=0.498/2 //Let k=0.12*[(sec(63.5*%pi/180))^2] k=0.12*[(sec(63.5*%pi/180))^2] //Let l=0.07*(2450/2621)*[(sec(65*%pi/180))^2] l=0.07*(2450/2621)*[(sec(65*%pi/180))^2] //let m=tan(63.5*%pi/180)+tan(7.8*%pi/180) m=tan(63.5*%pi/180)+tan(7.8*%pi/180) ETAs=[1+((j*(k+l))/m)]^-1 printf("\n From equation 8.3 we have ETAs= %0.4f",ETAs) disp("Also ETAs can be calculated from ETAs=(T_01-T_03)/(T_01-T_ss03)") disp("We have T_03=T3+V3^2/(2*Cp)") disp("p03=p3*(T_03/T3)^(k/(k-1))") disp("T_ss03=T_01*(p_03/(p_01)*((k-1)/k))") ETAs=(2860-2493)/(2860-2450) printf(" Hence we have ETAs= %0.3f",ETAs)