clear all; clc; disp("Inlet Configuration selection: Mr1,t=0.75 and ßf1=25 degrees") M_r1t=0.75 beta_f1=25*%pi/180 M_1t=M_r1t*sin(beta_f1) printf(" M_1t=%0.3f",M_1t) disp("T1=To1/(1=((k-1))*(M_lt^2)/2") T1=530/(1+0.2*(0.317^2)) printf("\n Thus the value of T1= %0.1fR",T1) a1=(1.4*53.33*32.2*519.6)^0.5 printf("\n a1= %0.2f ft/s",a1)//answer provided here is more accurate V_1t=0.317*1117.6 printf("\n V1=%0.1f ft/s",V_1t) W_1t=0.75*1117.6 printf("\n W_1t= %0.1f ft/s",W_1t) U_1t=[(838.2^2)-(354.3^2)]^0.5 printf("\n U_1t= %0.1f ft/s",U_1t) omega=1623 U_1t=759.6 r_1t=U_1t/omega printf("\n So we have r_1t= %0.3f ft=5.6in",r_1t) //let x=k/k-1 x=3.5 po1=14.7 T_1=519.6 T_o1=530 p1=po1*[(T_1/T_o1)^x] printf("\n So we have p1= %0.1f psia",p1) p1=13.7 R=53.33 T1=519.6 rho1=(p1*144)/(R*T_1) printf("\n rho1= %0.4f lbm/ft^3",rho1) m=17 rho1=0.0713 V1=354.3 A1=m/(rho1*V1) printf("\n A1= %0.3f ft^2=96.9 in ^2,assuming uniform inlet flow.\n\n",A1) disp("From pi*[(r_1t^2)-(r_1h^2)]=A1") disp("We have r_1h={[(r_1t^2)-A1]/pi}^0.5=0.72 in") disp("U_1h=97.0 ft/s") disp("ß_f1,h=taninverse(V_1h/U_1h)") V_1h=354.3 U_1h=97 beta_f1h=(atan(V_1h/U_1h))*180/%pi printf(" ßf1= %0.1f degrees",beta_f1h) disp("(B) Outlet Configuration From") Cp=0.24 To1=530 //let y=(k-1)/k=0.2857 y=0.2857 //let m=po2/po1 m=2.5 H_ad=Cp*To1*778*[(m)^(y)-1] printf(" H_ad=H_ad=Cp*To1*778[(po2/po1)^((k-1)/k)-1] %0.0f ft-lbf/lbm ",H_ad) m=17 rho1=0.0713 Q1=m/rho1 printf("\n Q1=%0.1f ft^3/s",Q1) N=15500 H_ad=29614 Q1=238.4 Ns=N*(Q1^0.5)/((H_ad)^0.75) printf("\n We obtain specific speed %0.0f rpm*{(ft^3/s)^0.5}(ft-lbf/lbm)^0.75 ",Ns) disp("Fom figure 6.7 we have estimated Eta_c=0.87 and Ds=D2*(H_ad)/(Q1^0.5)=1.50") D2=1.5*(238.4^0.5)/(29614^0.25) printf("\n D2=%0.4f ft=21.2 inches or r2=10.6 in. and U2=r2*omega=1433.7 ft/s",D2) disp("Referring to figure 6.16c,we have T_sso3=T_o1*(po3/po1)^((k-1)/k)") //((k-1)/k)=x x=0.2857 T_o1=530 //let l=po3/po1 l=2.5 T_sso3=T_o1*(l^x) printf(" T_sso3= %0.1f R ",T_sso3) disp("From Eta_c=(T_sso3-(T_o1))/(To3-To1) we have To2=To3") //let l=To2/To3 l=(1/0.87)*(688.6-530)+530 printf(" To2/To3 %0.1fR",l) disp("Also from Etam=U2*Vu2/[Cp*(T_o2-T_o1)]") Vu2=0.95*0.24*778*32.2*(712.3-530)/(1433.7) printf(" With the estimated Eta_m=0.95,Vu2=%0.1f ft/s",Vu2) disp("Flow coefficient φ=Vm2/U2=0.30 ") Vm2=0.3*1433.7 printf(" Vm2=%0.1f ft/s",Vm2) disp("W2=[Vm2^2+(U2-Vu2)^2]^0.5=827.9 ft/s") disp("V2=[Vu2^2+Vm2^2]^0.5=844.1 ft/s") W1t=838.2 W2=827.9 Df=W1t/W2 printf(" Hence we have diffusion factor Df=%0.3f. The value is less than 1.9 which is okay.",Df) disp("The impeller efiiciency can be estiamted form the losses fraction X=(1-Eta_imp)/(1-Eta_c) is approximately =0.6 ") Eta_imp=1-0.6*(1-0.87) printf("\n Eta_imp %0.3f",Eta_imp) disp("Hence from Eta_imp=(T_so2-T_o1)/(T_o2-T_o1),we have T_so2=T_o1+Eta_imp*(To2-T_o1)=698R and po2=po1*(T_so2/T_o1)^(k/(k-1))") po1=14.7 T_so2=698.1 T_o1=530 //Let x=(k/(k-1)) x=3.5 po2=po1*(T_so2/T_o1)^x printf(" po2=%0.2f psia ",po2) disp("Then from the energy equation we have T2=T_o2-V2^2/(2*Cp)=653.0R") disp("Hence p2=p02*(T2/To2)^(k/(k-1))=28.4psia and rho2=p2/(R*T2)=0.117lbm/ft^3") disp("Selecting Zb=16 and using the Stanitz fromula for the slip coefficient we have Vdash_u2=Vu2+0.63*pi*U2/Zb") Vu2=726.3 U2=1433.7 Zb=16 Vdash_u2=Vu2+0.63*%pi*U2/Zb printf(" Vdash_u2= %0.1f ft/s",Vdash_u2) disp("tanß_b2=Vm2/(U2-Vdash_u2)") Vm2=430.1 U2=1433.7 Vdash_u2=903.6 tan_beta_b2=Vm2/(U2-Vdash_u2) printf(" tanß_b2=%0.2f ",tan_beta_b2) betab2=(atan(tan_beta_b2))*180/%pi printf("\n ß_b2= %0.0f degrees",betab2) disp("With blade thickness t=0.15,contraction factor is determined") Zb=16 t=0.15 betab2=39*%pi/180 D2=21.3 epsilon2=1-[(Zb*t)/(sin(betab2))]/(%pi*D2) printf(" Thus epsilon2= %0.2f",epsilon2) disp("Hence from the mass equation we can determine b2") b2=17/(0.117*430.1*%pi*1.765*0.94) printf(" b2=%0.4f=0.7 8inch",b2)