clear all; clc; disp("Assume uniform axial flow at the inlet") disp("(a) At the hub") disp("V_a=15.5m/s") omega=157 D_h=0.37 U_h=0.5*omega*D_h printf(" Uh= %0.2f m/s",U_h) disp("Vu2=(Vmu2*Dm)/Dh") V_mu2=15 D_m=0.585 V_u2=(V_mu2*D_m)/D_h printf(" Hence Vu2= %0.1f m/s",V_u2) V_a=15.5 disp("tan(ß1)=(Uh/Va). Hence we can determine value of ß1") //let x=Uh/Va x=U_h/V_a beta_1=(atan(x))*180/%pi printf(" ß1= %0.1f degrees",beta_1) disp("tan(ß2)=(Uh-Vu2)/Va") //Let y=(Uh-Vu2)/Va y=(U_h-V_u2)/V_a beta_2=(atan(y))*180/%pi printf(" ß2= %0.2f degrees \n",beta_2) disp("(b) At the tip") U_t=0.5*(157*0.74) printf("\n Ut= %0.2f m/s",U_t) V_u2=(15*0.585)/0.74 printf("\n Vu2= %0.2f m/s",V_u2) //let p=atan(58.09/15.5) p=(atan(58.09/15.5))*180/%pi printf("\n ß1 = %0.0f degrees",p) //let q=atan((58.09-11.86)/15.5) q=atan((58.09-11.86)/15.5)*180/%pi printf("\n ß2 = %0.3f degrees",q) disp("On rounding off ß2=71.4")