// Variable Declaration V = 400.0 //Voltage(V) f = 50.0 //Frequency(Hz) HP_1 = 75.0 //Power(H.P) HP_2 = 25.0 //Power(H.P) HP_3 = 10.0 //Power(H.P) pf_1 = 0.75 //Power factor at 3/4 load pf_2 = 0.78 //Power factor at 4/5 load pf_3 = 0.8 //Power factor at full load pf_4 = 0.9 //Lagging power factor improved pf_5 = 0.74 //Power factor of 2nd motor at 2/3 of full load pf_6 = 0.8 //Power factor of 3rd motor at full load // Calculation Section theta_1 = acos(pf_1) theta_2 = acos(pf_2) theta_3 = acos(pf_3) S_1P = (0.75*HP_1*746*10**-3/pf_1)*exp(%i*theta_1) //kVA demanded by first motor(kVA) S_2P = (0.8*HP_2*746*10**-3/pf_2)*exp(%i*theta_2) //kVA demanded by second motor(kVA) S_3P = (HP_3*746*10**-3/pf_3)*exp(%i*theta_3) //kVA demanded by third motor(kVA) S_TP = S_1P + S_2P + S_3P //Total kVA demanded by all loads(kVA) pf_l_wc = cos(phasemag(S_TP)*%pi/180) //Line power factor without capacitive correction kW_T = real(S_TP) //Total kW demanded by load(kW) kVAR_T = imag(S_TP) //Total lagging kVAR demanded by loads(kVAR) theta_4 = acos(pf_4) P_react = kW_T*tan(theta_4) //Reactive power supplied by line for 0.9 pf(kVAR) power = kVAR_T - P_react //Reactive power supplied by capacitor bank(kVAR) theta_5 = acos(pf_5) theta_6 = acos(pf_6) S_2L = (2*HP_2*746*10**-3/(3*pf_5))*exp(%i*theta_5) //kVA demanded by second motor(kVA) S_3L = (HP_3*746*10**-3/pf_3)*exp(%i*theta_3) //kVA demanded by third motor(kVA) S_TL = S_2L + S_3L //Total kVA demanded during lean period(kVA) S_line = real(S_TL) - complex(0,power-imag(S_TL)) //kVA supplied by line(kVA) pf_line = cos(phasemag(S_line)*%pi/180) //Line power factor // Result Section printf('Line power factor with capacitor bank connected during lean period = %.2f leading' ,pf_line)