// Variable Declaration P = 5.0 //Power(MW) pf = 0.8 //lagging power factor d = 15.0 //Distance of line(km) J = 4.0 //Current density(amp per mm^2) r = 1.78*10**(-8) //Resistivity(ohm-m) kV_1 = 11.0 //Permissible voltage level(kV) kV_2 = 22.0 //Permissible voltage level(kV) // Calculation Section I_1 = (P*10**3)/((3)**(0.5) * (kV_1) * pf) //Load current(A) area_1 = I_1/J //Cross-sectional area of the phase conductor(mm^2) volume_1 = 3 * (area_1/10**6) * (d*10**3) //Volume of conductors material(m^3) R_1 = r * (d*10**3)/(area_1 * (10**-6)) //Resistance per phase(ohm) PL_1 = 3 * (I_1**2) * (R_1*10**(-3)) //Power loss(kW) I_2 = (P*10**3)/((3)**(0.5) * (kV_2) * pf) //Load current(A) area_2 = I_2/J //Cross-sectional area of the phase conductor(mm^2) volume_2 = 3 * (area_2/10**6) * (d*10**3) //Volume of conductors material(m^3) R_2 = r * (d*10**3)/(area_2 * (10**-6)) //Resistance per phase(ohm) PL_2 = 3 * (I_2**2) * (R_2*10**(-3)) //Power loss(kW) area_ch = (area_1-area_2)/area_1*100 //Change in area of 22kV level from 11 kV level(%) vol_ch = (volume_1-volume_2)/volume_1*100 //Change in volume of 22kV level from 11 kV level(%) loss_ch = (PL_1-PL_2)/PL_1*100 //Change in losses of 22kV level from 11 kV level(%) // Result Section printf('For 11 kV level :') printf('Cross-sectional area of the phase conductor = %d mm^2' ,area_1) printf('Volume of conductors material = %.2f m^3' ,volume_1) printf('Power loss = %.2f kW' ,PL_1) printf('\nFor 22 kV level :') printf('Cross-sectional area of the phase conductor = %d mm^2' ,area_2) printf('Volume of conductors material = %.2f m^3' ,volume_2) printf('Power loss = %.2f kW' ,PL_2) printf('\nConductor size has decreased by %.f percent in 22 kV level' ,area_ch) printf('Conductor volume has decreased by %.f percent in 22 kV level' ,vol_ch) printf('Conductor losses has decreased by %.f percent in 22 kV level' ,loss_ch)