// Given:- T1 = 300.00 // in kelvin AV = 5.00 // volumetric flow rate in m^3/s p1 = 100.00 // in kpa pr = 10.00 // compressor pressure ratio T3 = 1400.00 // turbine inlet temperature in kelvin Wt_ms = 706.9 // kJ/kg Wc_m = 279.7 // Analysis // At state 1, the temperature is 300 K. From Table A-22, h1 = 300.19 // in kj/kg pr1 = 1.386 // Interpolating in Table A-22, h2 = 579.9 // in kj/kg // From Table A-22 h3 = 1515.4 // in kj/kg pr3 = 450.5 // Interpolating in Table A-22, we get h4 = 808.5 // in kj/kg // calculations Wtbym = 0.8*Wt_ms Wcbym = Wc_m/0.8 h2 = 300.19 + Wcbym //pr2 = pr*pr1 //pr4 = pr3*1/pr // Part(a) //eta = ((h3-h4)-(h2-h1))/(h3-h2) // thermal efficiency Qinbym = h3 - h2 n = (Wtbym-Wcbym)/Qinbym // Result printf( '\n The thermal efficiency is : %.3f ',n) // Part(b) //bwr = (h2-h1)/(h3-h4) // back work ratio bwr = Wcbym/Wtbym // Result printf( '\n The back work ratio is : %.3f',bwr) // Part(c) R = 8.314 // universal gas constant, in SI units M = 28.97 // molar mass of air in grams // Calculations //mdot = AV*p1/((R/M)*T1) // mass flow rate in kg/s Wcycledot = 5.807*(Wcbym-Wtbym) // The net power developed // Result printf( '\n The net power developed, is : %.f kW .',-Wcycledot)