// Given:- T1 = 300.00 // in kelvin p1 = 100.00 // in kpa mdot = 5.807 // in kg/s p2 = 300.00 // in kpa p3 = p2 p4 = 1000.00 // in kpa p5 = p4 p6 = p4 T6 = 1400.00 // in kelvin T8 = T6 p7 = 300.00 // in kpa p8 = p7 etac = 0.8 // isentropic efficiency of compressor etat = 0.8 // isentropic efficiency of turbine etareg = 0.8 // regenerator effectiveness // Analysis // From example 9.9 h1 = 300.19 // in kj/kg h3 = h1 // in kj/kg h2s = 411.3 // in kj/kg h4s = 423.8 // in kj/kg // From example 9.8 h6 = 1515.4 // in kj/kg h8 = h6 h7s = 1095.9 // in kj/kg h9s = 1127.6 // in kj/kg // Calculations h4 = h3 + (h4s-h3)/etac // in kj/kg h2 = h1 + (h2s-h1)/etac // in kj/kg h9 = h8-etat*(h8-h9s) // in kj/kg h7 = h6-etat*(h6-h7s) // in kj/kg h5 = h4+etareg*(h9-h4) // in kj/kg // Part(a) // Calculations wtdot = (h6-h7)+(h8-h9) // The total turbine work per unit of mass flow in kj/kg wcdot = (h2-h1)+(h4-h3) // The total compressor work input per unit of mass flow in kj/kg qindot = (h6-h5)+(h8-h7) // The total heat added per unit of mass flow in kj/kg eta = (wtdot-wcdot)/qindot // thermal efficiency // Result printf( ' The thermal efficiency is: %.2f',eta) // Part(b) bwr = wcdot/wtdot // back work ratio // Result printf( ' The back work ratio is: %.2f',bwr) // Part(c) Wcycledot = mdot*(wtdot-wcdot) // net power developed in kw // Result printf( ' The net power developed, is: %.2f kW.',Wcycledot)