// Given:- V = 35.0 // volume of the vessel in m^3 p1 = 1.5 // in bar T1 = 120.0 // in degree celcius psi1 = 0.1 T2 = 22.0 // in degree celcius // Part(a) // The dew point temperature at the initial state is the saturation temperature corresponding to the partial pressure pv1. With the given relative humidity and the saturation pressure at 120C from Table A-2 pg1 = 1.985 // Interpolating in Table A-2 gives the dew point temperature as T = 60.0 // in degree celcius // Calculation pv1 = psi1*pg1 // partial pressure in bar // Result printf( 'The dew point temperature corresponding to the initial state, in degee celcius is: %f',T) // Part(b) Rbar = 8314.0 // universal gas constant Mv = 18.0 // molar mass of vapor in kj/kmol // Interpolation in Table A-2 Tdash = 56.0 // in degrees vv1 =((Rbar/Mv)*(T1+273))/(pv1*10**5) // the specific volume of the vapor at state 1 in m^3/kg // Result printf( 'The temperature at which condensation actually begins in degree celcius is: %f',Tdash) // Part(c) // From table vf2 = 1.0022e-3 vg2 = 51.447 vv2 = vv1 // specific volume at final state // Calculations mv1 = V/vv1 // initial amount of water vapor present in kg x2 = (vv2-vf2)/(vg2-vf2) // quality mv2 = x2*mv1 // the mass of the water vapor contained in the system at the final state mw2 = mv1-mv2 // Result printf( 'The amount of water condense in kg is: %f',mw2)