// Given:- m =1.0 // mass of sample in kg T1 = 21.0 // initial temperature in degree celcius psi1 = 0.7 // initial relative humidity T2 = 5.0 // final temperature in degree celcius // Part(a) // From table A-2 pg = 0.02487 // in bar // Calculations pv1 = psi1*pg // partial pressure of water vapor in bar omega1 = 0.622*(0.2542)/(14.7-0.2542) // Result printf( 'the initial humidity ratio is: %f',omega1) // Part(b) // The dew point temperature is the saturation temperature corresponding to the partial pressure, pv1. Interpolation in Table A-2 gives T = 15.3 // the dew point temperature in degree celcius // Result printf( 'The dew point temperature in degree celcius is: %f',T) // Part(c) // The partial pressure of the water vapor remaining in the system at the final state is the saturation pressure corresponding to 5C: // Calculations mv1 = 1/((1/omega1)+1) // initial amount of water vapor in the sample in kg ma = m-mv1 // mass of dry air present in kg pg = 0.00872 // in bar omega2 = 0.622*(pg)/(1.01325-pg) // humidity ratio after cooling mv2 = omega2*ma // The mass of the water vapor present at the final state mw = mv1-mv2 // Result printf( 'The amount of water vapor that condenses, in kg. is: %f',mw)