// Given:- AV1 = 142.0 // in m^3/min T1 = 5.0 // in degree celcius omega1 = 0.002 AV2 = 425.0 // in m^3/min T2 = 24.0 // in degree celcius psi2 = 0.5 p = 1.0 // in bar // Part(a) // From the psychrometric chart, Fig. A-9. va1 = 0.79 // in m^3/kg va2 = 0.855 // in m^3/kg omega2 = 0.0094 // Calculations ma1dot = AV1/va1 // in kg/min ma2dot = AV2 /va2 // in kg/min omega3 = (omega1*ma1dot+omega2*ma2dot)/(ma1dot + ma2dot) // Result printf( '\n The humidity ratio is: %.4f',omega3); // Part(b) // Reduction of the energy rate balance gives // (ha + omega*hv)3 = [ma1dot*(ha + omega*hv)1 + ma2dot*(ha + omega*hv)2]/(ma1dot+ma2dot) // With (ha + omega*hv)1 = 10kj/kg and (ha + omega*hv)2 = 47.8kj/kg from figure A-9 LHS = (ma1dot*10+ma2dot*47.8)/(ma1dot + ma2dot) // This value for the enthalpy of the moist air at the exit, together with the previously determined value for omega3, fixes the state of the exiting moist air. From inspection of Fig. A-9, T3 = 19.0 // in degree celcius // Result printf( '\n The temperature of the exiting mixed stream in degree celcius T3 is : %.2f',T3)