clc clear //DATA GIVEN p1=4*10^5; //initial pressure in N/m^2 V1=0.2; //initial volume in m^3 T1=130+273; //initial temperature in K p2=1.02*10^5; //final pressure after adiabatic expansion in N/m^2 Q23=72.5; //increase in enthalpy during constant pressure process in kJ Cp=1; //in kJ/kgK Cv=0.714; //in kJ/khK //gamma for air, g g=Cp/Cv; R=(Cp-Cv)*1000; //for reversible adiabatic process 1-2 //p1*(V1^g)=p2*(V2^g) V2=V1*(p1/p2)^(1/g); //final volume in m^3 //(T2/T1)=(p2/p1)^((g-1)/g); T2=T1*(p2/p1)^((g-1)/g);; //final temp. T2 in K m=p1*V1/R/T1; //mass in kg //for constant pressure process 2-3 //Q23=m*Cp*(T3-T2); T3=Q23/m/Cp+T2; //V2/T2=V3/T3 V3=V2/T2*T3; //Work done by the path 1-2-3, W123=W12+W23 W12=(p1*V1-p2*V2)/(g-1); W23=p2*(V3-V2); W123=W12+W23; //if the above processes are replaced by a single reversible polytropic process giving the same work between initial and final states, //W13=W123=(p1V1-p3V3)/(n-1) p3=p2; n=1+(p1*V1-p3*V3)/W123; //index of expansion, n printf(' (i) The Total Work done is: %5.0f Nm or J. \n',W123); printf(' (ii) The value of index of expansion, n is: %1.3f. \n',n); //NOTE: //there is slight variation in answers of the book due to rounding off of the values