// chapter 9 // example 9.8 // find intrinsic carrier density and conductivity at 300K in germanium // page 275 clear; clc; M=72.6; // atomic mass of germanium P=5400; // in Kg/m^3 (density) ue=0.4; // in m^2/V-s (mobility of electrons) uh=0.2; // in m^2/V-s (mobility of holes) Eg=0.7; // in eV (Band gap) m=9.1E-31; // in Kg (mass of electron) k=1.38E-23; // in J/K (Boltzmann’s constant) T=300; // in K (temperature) h=6.63E-34;// in J/s (Planck’s constant) pi=3.14; // value of pi used in the solution e=1.6E-19; // in C(charge of electron) // calculate Eg=Eg*e; // changing unit from eV to J ni=2*(2*pi*m*k*T/h^2)^(3/2)*exp(-Eg/(2*k*T)); printf('\nThe intrinsic carrier density for germanium at 300K is \tni=%1.1E /m^3',ni); sigma=ni*e*(ue+uh); printf('\nThe conductivity of germanium is \t%1.2f (ohm-m)^-1',sigma); // Note: Answer in the book is wrong due to calculation mistake