//caption:root_locus_description //example 7.24.2 //page 296 s=%s; syms K; GH=K/(s*(s+1)*(s+3)) zeta=0.5 //from given data disp("the characterstics eq. is determined as:") CH=(s*(s+1)*(s+3))+K CH=sym('(s*(s+1)*(s+3))+K'); disp('=0',CH,"characterstics_eq,CH=") c0=coeffs(CH,'s',0); c1=coeffs(CH,'s',1); c2=coeffs(CH,'s',2); c3=coeffs(CH,'s',3); b=[c0 c1 c2 c3] n=4; routh=[b([4,2]);b([3,1])]; routh=[routh;-det(routh)/routh(2,1),0] t=routh(2:3,1:2) routh=[routh;-det(t)/t(2,1),0] K=sym('-(s^3+4*s^2+3*s)') d=diff(K,s) e=-3*s^2-8*s-3 r1=roots(e) disp(r1,"roots=") disp("-0.45 is break away point since it lies on root locus") disp(routh,"routh=") disp("for given system to be marginally stable:"); disp("(12-K)=0 "); disp("which gives:"); disp("K=12, for margianl stability"); K=12; k=12 a=4*s^2+k//intersection of root locus with imaginary plane r=roots(a) g=k/(s*(s+1)*(s+3)) G=syslin('c',g) evans(g,8) xgrid(2) disp("the line theta=acos(zeta)=60 intersects root locus at sa=(-0.35+i0.6)") disp("the value of K at s=sa is find to be 1.66 ") disp("the value of K at s=-4") disp("K=12") disp("at K=1.66") k=1.66 H=1 G=k/(s*(s+1)*(s+3)) CL=G/(1+G*H) disp(CL,"C(s)/R(s)=")