//caption:stability_using_Nyquist_criterion //example 12_23_ii //page 535 disp("for K=1") g=(0.1*(s+10)*(s+40))/(s*(s+1)*(s+4)); g1=(0.1*(s1+10)*(s1+40))/(s1*(s1+1)*(s1+4)); GH=syslin('c',g); GH1=syslin('c',g1); nyquist(GH); nyquist(GH1); //mtlb_axis([-3 0.5 -0.6 0.6]); xtitle('Nyquist plot of (0.1*(s+10)*(s+40))/(s*(s+1)*(s+4))') figure; show_margins(GH,'nyquist') disp("since the point(-1+%i0) is encircled twice clockwise by Nyquist plot ,so N=2 and P=0(given)") N=-2;//no. of encirclement of -1+%i0 by G(s)H(s) plot anticlockwise P=0;//no. of poles of G(s)H(s) with positive real part Z=P-N;//np.of zeros of 1+G(s)H(s)=0 with positive real part disp(Z,"Z=") disp("as Z=2,there are two roots of closed loop characterstics eq having positive real part, hence system is unstable.")