//caption:stability_using_Nyquist_criterion //example 11_26_i //page 497 clf(); s=%s; s1=-s; disp("for K=10") g=(10*(s-1))/((s+2)*(s+3)); g1=(10*(s1-1))/((s1+2)*(s1+3)); GH=syslin('c',g); GH1=syslin('c',g1); nyquist(GH); nyquist(GH1); mtlb_axis([-2 2 -2.5 2.5]); xtitle('Nyquist plot of (10*(s-1))/((s+2)*(s+3));') disp("since the point(-1+%i0) is encircled clockwise by Nyquist plot ,so N=-1 and P=1(given)") N=-1;//no. of encirclement of -1+%i0 by G(s)H(s) plot anticlockwise P=0;//no. of poles of G(s)H(s) with positive real part Z=P-N;//np.of zeros of 1+G(s)H(s)=0 with positive real part disp(Z,"Z=") disp("as Z=1,there is one roots of closed loop characterstics eq having positive real part, hence system is unstable.")