//caption:stability_using_Nyquist_criterion //example 11_24 //page 496 clf; s=%s; s1=-s; g=50/((s+1)*(s+2)); g1=50/((s1+1)*(s1+2)); GH=syslin('c',g) GH1=syslin('c',g1) nyquist(GH); nyquist(GH1); mtlb_axis([-5 30 -20 20]); xtitle('Nyquist plot of 50/((s+1)*(s+2))') figure; show_margins(GH,'nyquist') disp("since the point(-1+%i0) is not encircled by Nyquist plot ,so N=0 and P=0(given)") N=0;//no. of encirclement of -1+%i0 by G(s)H(s) plot P=0;//no. of poles of G(s)H(s) with positive real part Z=P-N;//np.of zeros of 1+G(s)H(s)=0 with positive real part disp(Z,"Z=") disp("as Z=0,there are no roots of closed loop characterstics eq having positive real part, hence system is stable.")