// Exa 2.21 clc; clear; close; // given : f=60 // frequency in Hz omega=2*%pi*f // angular frequency in rad/sec sigma=5.8*10^7 // conductivity in mho/m epsilon_0=8.854*10^-12 // permittivity in free space in F/m mu_0=4*%pi*10^-7 // permeability in free space in H/m epsilon_r=1 // relative permittivity mu_r=1 // relative permeability epsilon=epsilon_r*epsilon_0 // permittivity mu=mu_0*mu_r // permeability k=sigma/(omega*epsilon) // ratio disp(k,"ratio k is equal to") disp("since k>>1 therefore it is very good conductor:") alpha=sqrt(omega*mu*sigma/2) // attenuation constant in m^-1 Beta=sqrt(omega*mu*sigma/2) // phase constant in m^-1 Gamma=alpha+(%i*Beta) // propagation constant in m^-1 lambda=2*%pi/Beta // wavelength eta=sqrt((%i*omega*mu/sigma)) // intrinsic impedence in ohm v=lambda*f // phase velocity of wave in m/s disp(alpha,"attenuation constant in m^-1:") disp(Beta,"phase constant in m^-1:") disp(Gamma,"propagation constant in m^-1:") disp(eta,"intrinsic impedence in ohm:") disp(lambda*100,"wavelength in cm:") disp(v,"phase velocity of wave in m/s:")