// Exa 2.20 clc; clear; close; // given : sigma=10^-2 // conductivity of earth in mho/m epsilon_r=10 // relative permittivity mu_r=2 // relative permeability epsilon_0=(1/(36*%pi))*10^-9 // permittivity in free space epsilon=epsilon_r*epsilon_0 // permittivity f1=50 // frequency in Hz omega1=2*%pi*f1 // angular frequency in rad/sec disp("When frequency=50Hz:") k1=sigma/(omega1*epsilon) disp(k1,"K1 is equal to") disp("since k1>>1 hence it behaves like a good conductor:") f2=1 // frequency in kHz f2=1*10^3 // frequency in Hz omega2=2*%pi*f2 // angular frequency in rad/sec disp("When frequency=1kHz:") k2=sigma/(omega2*epsilon) disp(k2,"K2 is equal to") disp("since k2>>1 hence it behaves like a good conductor:") f3=1 // frequency in MHz f3=1*10^6 // frequency in Hz omega3=2*%pi*f3 // angular frequency in rad/sec disp("When frequency=1MHz:") k3=sigma/(omega3*epsilon) disp(k3,"K3 is equal to") disp("since k3=18 hence it behaves like a moderate conductor:") f4=100 // frequency in MHz f4=100*10^6 // frequency in Hz omega4=2*%pi*f4 // angular frequency in rad/sec disp("When frequency=100MHz:") k4=sigma/(omega4*epsilon) disp(k4,"K4 is equal to") disp("since k4=0.18 hence it behaves like a quasi-dielectric:") f5=10 // frequency in GHz f5=10*10^9 // frequency in Hz omega5=2*%pi*f5 // angular frequency in rad/sec disp("When frequency=10GHz:") k5=sigma/(omega5*epsilon) disp(k5,"K5 is equal to") disp("since k5<<1 hence it behaves like a good dielectric:")