//Tested on Windows 7 Ultimate 32-bit //Chapter 7 Field Effect Transistors Pg no. 232,233 and 234 clear; clc; //Given Data //Figure 7.23 and 7.24 VDD=18;//drain supply voltage in volts IDSS=10D-3;//drain saturation current in amperes VP=-5;//pinchoff voltage in volts RD=1.5D3;//drain resistance in ohms RS=1D3;//source resistance in ohms R1=1.5D6;//divider network resistance R1 in ohms R2=180D3;//divider network resistance R2 in ohms C1=5D-6;//gate coupling capacitance in farads C2=25D-6;//source bypass capacitance in farads C3=15D-6;//drain coupling capacitance in farads //Solution disp("(i)"); VG=VDD*R2/(R1+R2);//gate to ground voltage in volts VGS_a=1.93;//for ID=0 mA VGS=VSS volts ID_a=1.93D-3;//for VGS=0 volts ID=VG/RS amperes0 //a load line is constructed using these values and the intersection with charecteristic curve gives Q point IDQ=3.64D-3;//quiscent drain current found graphically in amperes printf("IDQ = %.2f mA",IDQ*10^3); disp("(ii)"); VGS_Q=-1.85;//quiscent gate to source voltage in volts found graphically printf("VGS_Q = %.2f Volts",VGS_Q); disp("(iii)"); VD=VDD-IDQ*RD;//drain to ground voltage in volts (since source is grounded) printf("VD = %.2f Volts",VD); disp("(iv)"); VS=IDQ*RS;//source to ground voltage in volts printf("VS = %.2f Volts",VS); disp("(v)"); VDS=VDD-IDQ*(RD+RS);//drain to source voltage in volts printf("VDS = %.1f Volts",VDS);