//Tested on Windows 7 Ultimate 32-bit //Chapter 6 Single Staje BJT Amplifiers Pg no. 195 and 196 clear; clc; //Given Data //Figure 6.18,6.19,6.20 VCC=15;//collector supply voltage in volts RC=5.6D3;//collector resistance in ohms RE0=390;//unbypassed emitter resistance in ohms RE1=390;//bypased emitter resistance in ohms R1=33D3;//divider network resistance R1 in ohms R2=4.7D3;//divider network resistance R2 in ohms VBE=0.7;//forward voltage drop of emitter diode in volts Bdc=140;//DC CE current gain beta Bac=160;//AC CE current gain beta VT=25D-3;//voltage equivalent of temperature in volts Vs=15D-3;//source rms voltage in volts Rs=600;//source internal impedance in ohms C1=10D-6;//input coupling capacitance in farads C2=50D-6;//emitter bypass capacitance in farads C3=10D-6;//output coupling capacitance in farads RL=[3.3D3 10D3 33D3 100D3 500D3 %inf] ;//load resistances in ohms //Solution for i=1:6 printf("Case (%d)\n RL = %.1f kilo-ohms\n",i,RL(i)/1000); Rin_dc=Bdc*(RE0+RE1);//dc input resistance in ohms if 0.1*Rin_dc>R2 then VB=VCC*R2/(R1+R2);//base to ground voltage in volts , since Rin>10*R2 it can be neglected end VE=VB-VBE;//emitter to ground voltage in volts IE=VE/(RE0+RE1);//emitter current in amperes IC=IE;//collector current is approximately equal to emitter current VC=VCC-IC*RC;//collector to ground voltage in volts re=VT/IE;//equivalent BJT model emitter resistance in ohms Rin_dash=Bac*(RE0+re);//internal resistance of BJT in ohms Rin=1/(1/R1+1/R2+1/Rin_dash);//total internal resistance is Rin=R1||R2||Rin' f=Rin/(Rs+Rin);//input attenuation factor if RL(i)==%inf then RL_dash=RC;//effective load resistance else RL_dash=1/(1/RC+1/RL(i));//effective load resistance end Gv=RL_dash/(re+RE0);//a.c. voltage gain Gv_dash=f*Gv;//overall a.c. voltage gain vc=Gv_dash*Vs;//a.c voltage at collector in volts printf("Output voltage vc = %.2f mV\n",vc*1000); end //error in answers in textbook due to approximations